參考文獻 |
[1] C. Gregory, B. Loupias, J. Waugh, P. Barroso, S. Bouquet, E. Brambrink, S. Dono,
E. Falize, J. Howe, Y. Kuramitsu, R. Kodama, M. Koenig, C. Michaut, S. Myers,
W. Nazarov, M. Notley, A. Oya, S. Pikuz, M. le Gloahec, Y. Sakawa, C. Spindloe,
M. Streeter, L. Wilson, N. Woolsey, Astrophysical jet experiments, Plasma Physics
and Controlled Fusion 50. doi:10.1088/0741-3335/50/12/124039.
[2] Y. Kuramitsu, Y. Sakawa, J. N. Waugh, C. D. Gregory, T. Morita, S. Dono, H. Aoki,
H. Tanji, B. Loupias, M. Koenig, N. Woolsey, H. Takabe, Jet formation in counterstreaming
collisionless plasmas, The Astrophysical Journal Letters 707 (2) (2009)
L137.
URL http://stacks.iop.org/1538-4357/707/i=2/a=L137
[3] C. D. Gregory, B. Loupias, J. Waugh, S. Dono, S. Bouquet, E. Falize, Y. Kuramitsu,
C. Michaut, W. Nazarov, S. A. Pikuz, Y. Sakawa, N. C. Woolsey, M. Koenig, Laserdriven
plasma jets propagating in an ambient gas studied with optical and proton
diagnostics, Physics of Plasmas 17 (5) (2010) 052708. doi:10.1063/1.3431094.
[4] T. Morita, Y. Sakawa, Y. Kuramitsu, S. Dono, H. Aoki, H. Tanji, T. N. Kato, Y. T.
Li, Y. Zhang, X. Liu, J. Y. Zhong, H. Takabe, J. Zhang, Collisionless shock generation
in high-speed counterstreaming plasma
ows by a high-power laser, Physics
of Plasmas 17 (12) (2010) 122702. arXiv:http://dx.doi.org/10.1063/1.3524269,
doi:10.1063/1.3524269.
URL http://dx.doi.org/10.1063/1.3524269
[5] Y. Kuramitsu, Y. Sakawa, T. Morita, C. D. Gregory, J. N. Waugh, S. Dono, H. Aoki,
H. Tanji, M. Koenig, N. Woolsey, H. Takabe, Time evolution of collisionless shock
in counterstreaming laser-produced plasmas, Phys. Rev. Lett. 106 (2011) 175002.
doi:10.1103/PhysRevLett.106.175002.
URL https://link.aps.org/doi/10.1103/PhysRevLett.106.175002
[6] Y. Kuramitsu, Y. Sakawa, S. Dono, C. D. Gregory, S. A. Pikuz, B. Loupias,
M. Koenig, J. N. Waugh, N. Woolsey, T. Morita, T. Moritaka, T. Sano, Y. Matsumoto,
A. Mizuta, N. Ohnishi, H. Takabe, Kelvin-helmholtz turbulence associated
with collisionless shocks in laser produced plasmas, Phys. Rev. Lett. 108 (2012)
195004. doi:10.1103/PhysRevLett.108.195004.
URL https://link.aps.org/doi/10.1103/PhysRevLett.108.195004
[7] Y. Sakawa, T. Morita, Y. Kuramitsu, H. Takabe, Collisionless electrostatic
shock generation using high-energy laser systems, Advances in Physics: X
1 (3) (2016) 425{443. arXiv:http://dx.doi.org/10.1080/23746149.2016.1213660,
doi:10.1080/23746149.2016.1213660.
URL http://dx.doi.org/10.1080/23746149.2016.1213660
[8] Y. Kuramitsu, A. Mizuta, Y. Sakawa, H. Tanji, T. Ide, T. Sano, M. Koenig, A. Ravasio,
A. Pelka, H. Takabe, C. D. Gregory, N. Woolsey, T. Moritaka, S. Matsukiyo,
Y. Matsumoto, N. Ohnishi, Time evolution of kelvin-helmholtz vortices associated
with collisionless shocks in laser-produced plasmas, The Astrophysical Journal 828 (2)
(2016) 93.
URL http://stacks.iop.org/0004-637X/828/i=2/a=93
[9] Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji,
K. Kimura, S. Fukumochi, M. Kashihara, T. Tanimoto, H. Nakamura, T. Ishikura,
K. Takeda, M. Tampo, R. Kodama, Y. Kitagawa, K. Mima, K. A. Tanaka,
M. Hoshino, H. Takabe, Model experiment of cosmic ray acceleration due to an
incoherent wakeeld induced by an intense laser pulse, Physics of Plasmas 18 (1)
(2011) 010701. arXiv:http://dx.doi.org/10.1063/1.3528434, doi:10.1063/1.3528434.
URL http://dx.doi.org/10.1063/1.3528434
[10] Y. Kuramitsu, N. Nakanii, K. Kondo, Y. Sakawa, Y. Mori, E. Miura, K. Tsuji,
K. Kimura, S. Fukumochi, M. Kashihara, T. Tanimoto, H. Nakamura, T. Ishikura,
K. Takeda, M. Tampo, R. Kodama, Y. Kitagawa, K. Mima, K. A. Tanaka,
M. Hoshino, H. Takabe, Experimental evidence of nonthermal acceleration of relativistic
electrons by an intensive laser pulse, Phys. Rev. E 83 (2011) 026401.
doi:10.1103/PhysRevE.83.026401.
URL https://link.aps.org/doi/10.1103/PhysRevE.83.026401
[11] Y. Kuramitsu, H.-H. Chu, L.-N. Hau, S.-H. Chen, Y.-L. Liu, C.-Y. Hsieh, Y. Sakawa,
T. Hideaki, J. Wang, Relativistic plasma astrophysics with intense lasers, High Energy
Density Physics 17 (2015) 198{202. doi:10.1016/j.hedp.2014.11.005.
[12] N. Khasanah, C. Peng, C. Chen, T. Huang, N. Bolouki, T. Moritaka, Y. Hara,
H. Shimogawara, T. Sano, Y. Sakawa, Y. Sato, K. Tomita, K. Uchino, S. Matsukiyo,
Y. Shoji, S. Tomita, S. Tomiya, R. Yamazaki, M. Koenig, Y. Kuramitsu,
Spatial and temporal plasma evolutions of magnetic reconnection
in laser produced plasmas, High Energy Density Physics 23 (2017) 15 { 19.
doi:https://doi.org/10.1016/j.hedp.2017.02.004.
URL http://www.sciencedirect.com/science/article/pii/S1574181817300095
[13] S. Naoz, R. Narayan, Generation of primordial magnetic elds on linear overdensity
scales, Phys. Rev. Lett. 111 (2013) 051303. doi:10.1103/PhysRevLett.111.051303.
URL https://link.aps.org/doi/10.1103/PhysRevLett.111.051303
[14] G. Gregori, A. Ravasio, C. Murphy, K. Schaar, A. Baird, A. Bell, A. Benuzzi-
Mounaix, R. Bingham, C. Constantin, R. Drake, M. Edwards, E. Everson, C. Gregory,
Y. Kuramitsu, W. Lau, J. Mithen, C. Niemann, H. Park, B. Remington,
B. Reville, A. Robinson, D. Ryutov, Y. Sakawa, S. Yang, N. Woolsey, M. Koenig,
F. Miniati, Generation of scaled protogalactic seed magnetic elds in laser-produced
shock waves, Nature 481 (7382) (2012) 480{483. doi:10.1038/nature10747.
[15] W. Fox, A. Bhattacharjee, K. Germaschewski, Fast magnetic reconnection
in laser-produced plasma bubbles, Phys. Rev. Lett. 106 (2011) 215003.
doi:10.1103/PhysRevLett.106.215003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.106.215003
[16] P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S.
Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham,
M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor,
K. Krushelnick, Magnetic reconnection and plasma dynamics in two-beam laser-solid
interactions, Phys. Rev. Lett. 97 (2006) 255001. doi:10.1103/PhysRevLett.97.255001.
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.255001
[17] N. L. Kugland, D. D. Ryutov, P.-Y. Chang, R. P. Drake, G. Fiksel, D. H. Froula,
S. H. Glenzer, G. Gregori, M. Grosskopf, M. Koenig, Y. Kuramitsu, C. Kuranz,
M. C. Levy, E. Liang, J. Meinecke, F. Miniati, T. Morita, A. Pelka, C. Plechaty,
R. Presura, A. Ravasio, B. A. Remington, B. Reville, J. S. Ross, Y. Sakawa,
A. Spitkovsky, H. Takabe, H.-S. Park, Self-organized electromagnetic eld structures
in laser-produced counter-streaming plasmas, Nature Physics 8 (2012) 809{812.
doi:10.1038/nphys2434.
[18] P. Nilson, L. Willingale, M. Kaluza, C. Kamperidis, S. Minardi, M.Wei, P. Fernandes,
M. Notley, S. Bandyopadhyay, M. Sherlock, R. Kingham, M. Tatarakis, Z. Najmudin,
W. Rozmus, R. Evans, M. Haines, A. Dangor, K. Krushelnick, Magnetic reconnection
and plasma dynamics in two-beam laser-solid interactions, Physical Review Letters
97 (25). doi:10.1103/PhysRevLett.97.255001.
[19] S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard,
M. Geissel, D. T. Oermann, M. Schollmeier, Y. Sentoku, T. E. Cowan, Increased
laser-accelerated proton energies via direct laser-light-pressure acceleration
of electrons in microcone targets, Physics of Plasmas 18 (5) (2011) 056710.
arXiv:http://dx.doi.org/10.1063/1.3575624, doi:10.1063/1.3575624.
URL http://dx.doi.org/10.1063/1.3575624
[20] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima, Highly ecient
relativistic-ion generation in the laser-piston regime, Phys. Rev. Lett. 92 (2004)
175003. doi:10.1103/PhysRevLett.92.175003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.92.175003
[21] X. Q. Yan, C. Lin, Z. M. Sheng, Z. Y. Guo, B. C. Liu, Y. R. Lu, J. X. Fang, J. E.
Chen, Generating high-current monoenergetic proton beams by a circularlypolarized
laser pulse in the phase-stableacceleration regime, Phys. Rev. Lett. 100 (2008) 135003.
doi:10.1103/PhysRevLett.100.135003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.100.135003
[22] A. Henig, S. Steinke, M. Schnurer, T. Sokollik, R. Horlein, D. Kiefer, D. Jung,
J. Schreiber, B. M. Hegelich, X. Q. Yan, J. Meyer-ter Vehn, T. Tajima, P. V.
Nickles, W. Sandner, D. Habs, Radiation-pressure acceleration of ion beams
driven by circularly polarized laser pulses, Phys. Rev. Lett. 103 (2009) 245003.
doi:10.1103/PhysRevLett.103.245003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.103.245003
[23] A. Macchi, S. Veghini, T. V. Liseykina, F. Pegoraro, Radiation pressure acceleration
of ultrathin foils, New Journal of Physics 12 (4) (2010) 045013.
URL http://stacks.iop.org/1367-2630/12/i=4/a=045013
[24] S. Kar, K. F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler,
P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri,
O. Willi, X. Y. Yuan, M. Zepf, M. Borghesi, Ion acceleration in multispecies targets
driven by intense laser radiation pressure, Phys. Rev. Lett. 109 (2012) 185006.
doi:10.1103/PhysRevLett.109.185006.
URL https://link.aps.org/doi/10.1103/PhysRevLett.109.185006
[25] T.-C. Liu, X. Shao, C.-S. Liu, B. Eliasson, J. Wang, S.-H. Chen, Enhancement of
proton energy by polarization switch in laser acceleration of multi-ion foils, Physics
of Plasmas 20 (10) (2013) 103112. arXiv:http://dx.doi.org/10.1063/1.4826510,
doi:10.1063/1.4826510.
URL http://dx.doi.org/10.1063/1.4826510
[26] G. M. Petrov, C. McGuey, A. G. R. Thomas, K. Krushelnick, F. N.
Beg, Proton acceleration from high-contrast short pulse lasers interacting with
sub-micron thin foils, Journal of Applied Physics 119 (5) (2016) 053302.
arXiv:http://dx.doi.org/10.1063/1.4941318, doi:10.1063/1.4941318.
URL http://dx.doi.org/10.1063/1.4941318
[27] D. Strickland, G. Mourou, Compression of amplied chirped optical pulses, Optics
Communications 55 (1985) 447{449. doi:10.1016/0030-4018(85)90151-8.
[28] S. Backus, C. G. D. III, M. M. Murnane, H. C. Kapteyn, High power
ultrafast lasers, Review of Scientic Instruments 69 (3) (1998) 1207{1223.
arXiv:http://dx.doi.org/10.1063/1.1148795, doi:10.1063/1.1148795.
URL http://dx.doi.org/10.1063/1.1148795
[29] T.-S. Hung, C.-H. Yang, J. Wang, S.-y. Chen, J.-Y. Lin, H.-h. Chu, A 110-tw
multiple-beam laser system with a 5-tw wavelength-tunable auxiliary beam for versatile
control of laser-plasma interaction, Applied Physics B 117 (4) (2014) 1189{1200.
doi:10.1007/s00340-014-5943-6.
URL http://dx.doi.org/10.1007/s00340-014-5943-6
[30] C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, C. T. Gibson, Accurate
thickness measurement of graphene, Nanotechnology 27 (12) (2016) 125704.
URL http://stacks.iop.org/0957-4484/27/i=12/a=125704
[31] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat Mater 6 (3) (2007) 183{191.
doi:10.1038/nmat1849.
URL http://dx.doi.org/10.1038/nmat1849
[32] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,
E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruo, Large-area synthesis of highquality
and uniform graphene lms on copper foils, Science 324 (5932) (2009)
1312{1314. arXiv:http://science.sciencemag.org/content/324/5932/1312.full.pdf,
doi:10.1126/science.1171245.
URL http://science.sciencemag.org/content/324/5932/1312
[33] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak,
W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo,
R. S. Ruo, Graphene lms with large domain size by a two-step chemical vapor
deposition process, Nano Letters 10 (11) (2010) 4328{4334, pMID: 20957985.
arXiv:http://dx.doi.org/10.1021/nl101629g, doi:10.1021/nl101629g.
URL http://dx.doi.org/10.1021/nl101629g
[34] J. M. Woord, S. Nie, K. F. McCarty, N. C. Bartelt, O. D. Dubon,
Graphene islands on cu foils: The interplay between shape, orientation,
and defects, Nano Letters 10 (12) (2010) 4890{4896, pMID: 20979362.arXiv:http://dx.doi.org/10.1021/nl102788f, doi:10.1021/nl102788f.
URL http://dx.doi.org/10.1021/nl102788f
[35] M.-C. Chuang, W.-Y. Woon, Nucleation and growth dynamics of graphene
on oxygen exposed copper substrate, Carbon 103 (2016) 384 { 390.
doi:https://doi.org/10.1016/j.carbon.2016.03.049.
URL http://www.sciencedirect.com/science/article/pii/S000862231630238X
[36] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K. P. Loh, Electrochemical
delamination of cvd-grown graphene lm: Toward the recyclable
use of copper catalyst, ACS Nano 5 (12) (2011) 9927{9933, pMID: 22034835.
arXiv:http://dx.doi.org/10.1021/nn203700w, doi:10.1021/nn203700w.
URL http://dx.doi.org/10.1021/nn203700w
[37] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M.
Peng, X. Bao, H.-M. Cheng, Repeated growth and bubbling transfer of graphene
with millimetre-size single-crystal grains using platinum, Nature Communications 3
(2012) 699. doi:10.1038/ncomms1702.
[38] Y.-M. Chen, S.-M. He, C.-H. Huang, C.-C. Huang, W.-P. Shih, C.-L. Chu, J. Kong,
J. Li, C.-Y. Su, Ultra-large suspended graphene as a highly elastic membrane for
capacitive pressure sensors, Nanoscale 8 (2016) 3555{3564. doi:10.1039/C5NR08668J.
URL http://dx.doi.org/10.1039/C5NR08668J
[39] G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56
(1986) 930{933. doi:10.1103/PhysRevLett.56.930.
URL https://link.aps.org/doi/10.1103/PhysRevLett.56.930
[40] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman
spectroscopy in graphene, Physics Reports 473 (5) (2009) 51 { 87.
doi:http://dx.doi.org/10.1016/j.physrep.2009.02.003.
URL http://www.sciencedirect.com/science/article/pii/S0370157309000520
[41] S. G. Bochkarev, G. V. Golovin, D. S. Uryupina, S. A. Shulyapov, A. V. Andriyash,
V. Y. Bychenkov, A. B. Savel′ev, Eect of a short weak prepulse on lasertriggered
front-surface heavy-ion acceleration, Physics of Plasmas 19 (10) (2012)
103101. arXiv:http://dx.doi.org/10.1063/1.4757216, doi:10.1063/1.4757216.
URL http://dx.doi.org/10.1063/1.4757216
[42] D. Jung, L. Yin, B. J. Albright, D. C. Gautier, R. Horlein, D. Kiefer, A. Henig,
R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X. Q. Yan, K. J.
Bowers, T. Tajima, J. C. Fernandez, D. Habs, B. M. Hegelich, Monoenergetic ion
beam generation by driving ion solitary waves with circularly polarized laser light,
Phys. Rev. Lett. 107 (2011) 115002. doi:10.1103/PhysRevLett.107.115002.
URL https://link.aps.org/doi/10.1103/PhysRevLett.107.115002
[43] T.-S. Hung, C.-H. Yang, J.Wang, S.-y. Chen, J.-Y. Lin, H.-h. Chu, A 110-tw multiplebeam
laser system with a 5-tw wavelength-tunable auxiliary beam for versatile control
of laser-plasma interaction, Applied Physics B 117 (4) (2014) 1189{1200.
[44] P. Antici, Laser-acceleration of high-energy short proton beams and applications,
These de Doctorat de I Ecole Polytechnique. |