博碩士論文 93222015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.147.68.138
姓名 李宗憲(Tsung-Hsien Lee)  查詢紙本館藏   畢業系所 物理學系
論文名稱 有機金屬化學氣相沉積法成長氮化銦薄膜之特性研究
(Characterizations of InN films grown by Metal Organics Chemical Vapor Deposition)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文之研究主題在探討磊晶緩衝層對於在Si(111)基板上成長氮化銦薄膜之影響。在此實驗中,所有的磊晶層都是以自製常壓式化學氣相沉積的方法來成長。在成長氮化銦薄膜中,氮化矽的形成往往會導致品質不好的氮化銦薄膜,為了避免形成氮化矽,我們利用緩衝層先沉積在矽基板上,並且探討哪一種緩衝層能有效的提升氮化銦磊晶層的品質。
由x-ray繞射結果發現,使用氮化鋁緩衝層或氮化銦鎵/氮化鋁緩衝層,均能有效的提升氮化銦的磊晶品質,其氮化銦磊晶層的x-ray繞射峰形半高寬分別達到754arcsec和724arcsec。由InN(002)訊號強度和InN(101) 訊號強度的比值分別達到70和140,可以看出使用氮化鋁和氮化銦鎵/氮化鋁緩衝層成長氮化銦,在c軸上有好的優選方向(preferred orientation)。使用不同的緩衝層(AlN、InGaN/AlN、In predeposition、In predeposition/SiC)成長氮化銦薄膜,利用掃描式電子顯微鏡和原子力顯微鏡來觀察表面的均勻程度和表面型貌,發現使用不同的緩衝層成長氮化銦薄膜是由大小不同的氮化銦顆粒(grain)所組成。以使用In predeposition/SiC緩衝層成長之氮化銦顆粒最大;使用AlN緩衝層成長之氮化銦薄膜最小,此現象可利用緩衝層材料的潤濕效果做解釋,其中AlN緩衝層在矽基板上有好的潤濕性質(wetting properties),與矽基板之間的接觸角較小,並且提供了均勻的成核層;相對的In緩衝層由於自聚性強,潤濕效果沒有AlN緩衝層好,與矽基板之間的接觸角較大,不能提供ㄧ個均勻的成核層。換言之,不同緩衝層有不ㄧ樣的表面張力,所提供給氮化銦薄膜的成核層有不ㄧ樣的均勻度跟晶格不匹配度,因此造成了不同的緩衝層所成長氮化銦薄膜在表面型態上的差異。
最後利用光激發螢光光譜觀察到以AlN緩衝層與InGaN/AlN緩衝層成長氮化銦薄膜的峰值分別位於0.73與0.77eV附近,由於兩種樣品在X光繞射實驗中InN(002)與 InN(101)其繞射峰位置並無差異,也就是沒有相對的應變(strain);而且也沒有發現到In2O3的訊號,也沒有其他可能的雜質的訊號。因此兩者在PL光譜峰值的差異,並無法以應變與雜質來解釋,可能的原因可以是因為樣品(InGaN/AlN緩衝層)本身具有很高的載子濃度,而造成在室溫下傳導帶已經有一些電子填入,所以電子要從傳導帶躍遷至價帶時會有更高的能量,才可以躍遷造成觀察到之PL峰值藍移,此現象可以以Burstein-Moss effect解釋。此外,In predeposition、In predeposition/SiC兩個樣品在相同實驗條件下,無法觀察到PL訊號,可能的原因是兩個樣品之X光繞射的訊號強度比前兩個樣品(AlN、InGaN/AlN)小了一個數量級。
摘要(英) In this study, we use hetero-epitaxiy method to growth different buffer layer for InN thin film on Si(111) substrate and discuss the characteristics of InN thin film. In this study, we use home-made atmospheric pressure chemical vapor deposition system to growth samples. In the growth of InN thin film, the formation of SiN thin film always decrease the quality of InN thin film. So, we use different buffer layer to prevent this problem.
According to x-ray diffraction experiments, we found that if we use AlN or InGaN/AlN buffer layer could increase the quality of InN thin film. The FWHM are 754arcsec and 724arcsec, respectively. The intensity ratio of InN(002) and InN(101) are 70 and 140, we can know the InN thin film has preferred orientation on c axis with AlN or InGaN/AlN buffer layer.
According to AFM and SEM, we can know the grain size of InN thin film with different buffer layer. We use the wetting ability of different buffer layer to discuss this problem. AlN has good wetting properties, the contact angle between AlN buffer layer and Si(111) is smaller than the In buffer layer, good wetting properties also can provid a uniform nucleation layer to InN thin film.
In PL, we found the peaks of PL spectrum of sample 1 and sample 2 are 0.73 and 0.77eV , the blue shift is due to the different carrier concentration of InN thin film, we call it Burstein-Moss effect.
關鍵字(中) ★ 氮化銦薄膜 關鍵字(英) ★ InN films
論文目次 摘要…………………………………………………………Ⅰ
致謝…………………………………………………………Ⅴ
目錄…………………………………………………………VII
表目錄……………………………………………………...IX
圖目錄…………………………………………………….X
第1章 導論…………………………………………………..1
1.1 前言………………………………………………….1
1.2氮化銦材料結構與特性…………………..................4
參考文獻…………………………………………….9
第2章 成長系統與分析儀器原理...................................11
2.1 金屬有機化學氣相沉積系統簡介………………..11
2.2 氮化銦薄膜樣品備製……………………………...13
2.3 X光繞射原理………………………………………15
2.4 光激發螢光光譜…………………………………...17
2.5 掃描式電子顯微鏡………………………………...18
2.6 原子力顯微鏡……………………………………...19
參考文獻…………………………………………...23
第3章 氮化銦薄膜分析…………………………………25
3.1 氮化銦薄膜成長簡介……………………………..25
3.2 氮化鋁緩衝層分析………………………………...27
3.2.1 潤溼性質(wetting properties)
3.2.2 氮化鋁緩衝層結構與表面形貌分析
3.3 氮化鋁緩衝層對成長氮化銦薄膜結構影響……...30
3.4 氮化鋁緩衝層對成長氮化銦薄膜光學性質影響...32
參考文獻…………………………………………...41
第4章 改變緩衝層材料與結構對氮化銦薄膜影響分析……………………………………………………………..42
4.1 氮化銦薄膜結構分析…………………………….43
4.2 氮化銦薄膜表面型態分析………………………..45
4.3 光學性質分析……………………………………..46
參考文獻…………………………………………..57
第5章 總結與未來工作....................................................58
5.1 總結………………………………………………..58
5.2 未來工作…………………………………………...60
參考文獻……………………………………………61
參考文獻 第1章參考文獻
[1]S. Nakamura,Y. Hara, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991)
[2]A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779-2808 (2003)
[3]S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapker, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998)
[4] B. E. Foutz, S. K. O’Leary, M. S. Shur, L. F. Eastman, J. Appl. Phys. 85, 7727 (1999)
[5] 林弘偉,”氮化銦磊晶及量子點材料之研究”,清華大學物理所,碩士論文(2004)
[6]Http://nanopedia.cwru.edu/
[7]A. Wakahara, T. Tsuchiya and A. Yoshida, J. Crystal Growth 99, 385 (1990)
[8]M. Sato, Jpn. J. Appl. Phys. 36, 595 (1997)
[9]Q. Guo, M. Nishio, H. Ogawa and A. Yoshida, Jpn. J. Appl. Phys. 38, L490 (1999)
[10]A.Yamamoto, Y. Yamauchi, M. Ohkubo and A. Hasimoto, J. Appl. Phys. 174, 641 (1997)
[11]S. Yamaguchi, M. Mariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, J. Appl. Phys. 85, 7682 (1999)
[12] A.Yamamoto, M. Tsujino, M. Ohkubo and A. Hasimoto, J. Crystal Growth 137, 415 (1994)
[13]S. E. Aleksandrov, V. A. Zykov, T. A. Gavrikova, and D. M. Krasovitskill, Semiconductors 32, 412 (1998)
[14]F. Agullo’-Rueda, E. E. Mendez, B. Bojarczuk, and S. Guha, Solid State Commun. 115, 19 (2000)
[15] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 2779-2808, 94, 5 (2003)
[16]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992)
[17]V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
[18]R. Juza, and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938)
第2章參考文獻
[1]羅正忠、李嘉平、鄭湘原譯,”半導體工程-先進製程與模擬”,培生教育出版集團,第九章,490-491
[2]O.Ambacher,M.S.Brandt,R.Dimitrov,T.Metzger,M.Stutzmann,R.A.Fishcer,A.Miehr,A.Bergmajer,and G.Dollinger,J.Vac.Sci Technol. B 14, 3532
[3] Y. Satio, N. Teraguchi, A. Suzuki, and Y. Nanishi, Proceeding of the International Workshop on Nitride Semiconductorsn (IWN’ 2000), Nagoya, Japan, September 24-27, 2000. IPAP conference series 1, p182
[4] Y. Satio, T. Yamaguchi, H. Kanazawa, K. Kano, T. Araki, A. Suzuki, Y. Nanishi, and Y. Teraguchi, J. Cryst. Growth. 1017, 237-239 (2002)
[5] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779-2808, (2003)
[6]林平盛,”氮化镓磊晶矽離子佈植活化度之研究”,中央大學物理所,碩士論文(2005)
[7]林弘偉,”氮化銦磊晶及量子點材料之研究”,清華大學物理所,碩士論文(2004)
[8]吳孟奇,洪勝富,龔正譯,”半導體元件”,第五,東華書局,第四章
[9]林鶴南,李龍正,劉克迅,”科儀新知”,17,(3),29 (1995)
第3章參考文獻
[1] A.Yamamoto, M. Tsujino, M. Ohkubo and A. Hasimoto, J. Crystal Growth 137, 415 (1994)
[2] S. Strite, D. Chandrasekhar, D. J. Smith, J. Sariel, H. Chen, N. Teraguchi, and H. Morkoc, J. Crystal Growth 127, 204 (1993)
[3] A. P. Lima, A. Tabata, J. R. Leite, S. Kaiser, D. Schikora, B. Schottker, T. Frey, D. J. As, and K. Lischka, J. Crystal Growth 201/202, 396 (1999)
[4] Y. Lu, X. Liu, X. Wang, D. C. Lu, D. Li, X. Han, G. Cong, and Z. Wang, J. Crystal Growth 263, 4 (2004)
[5] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779-2808 (2003)
[6] K. Y. Zang, L.S. Wang, S.J. Chua, C. V. Thompson, J. Crystal Growth 268, 515 (2004)
[7] V. Y. Davydov et al. Phys. Status. Solidi (B), 229 R1 (2002)
[8] T. L. Tansiey and C. P. Foley, J. Appl. Phys. 59, 3241 (1986)
[9] J.Grandal, M. A. Sanchez-Garcia, J. Crystal Growth 278, 373 (2005)
[10]E. Kurimoyo, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84 212 (2004)
第4章參考文獻
[1] 林弘偉,”氮化銦磊晶及量子點材料之研究”,清華大學物理所,碩士論文(2004)
[2] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 2779-2808, 94, 5 (2003)
[3] V. Y. Davydov et al. Phys. Status. Solidi (B), 229 R1 (2002)
[4] V. Y. Davydov et al. Phys. Status. Solidi (B), 230 R4 (2002)
第5章參考文獻
[1] V. Y. Davydov et al. Phys. Status. Solidi (B), 229 R1 (2002)
[2] T. L. Tansiey and C. P. Foley, J. Appl. Phys. 59, 3241 (1986)
[3]A.Yamamoto, Y. Yamauchi, M. Ohkubo and A. Hasimoto, J. Appl. Phys. 174, 641 (1997)
[4]S. Yamaguchi, M. Mariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, J. Appl. Phys. 85, 7682 (1999)
[5] A.Yamamoto, M. Tsujino, M. Ohkubo and A. Hasimoto, J. Crystal Growth 137, 415 (1994)
[6]S. E. Aleksandrov, V. A. Zykov, T. A. Gavrikova, and D. M. Krasovitskill, Semiconductors 32, 412 (1998)
[7]F. Agullo’-Rueda, E. E. Mendez, B. Bojarczuk, and S. Guha, Solid State Commun. 115, 19 (2000)
[8] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 2779-2808, 94, 5 (2003)
[9]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992)
[10]V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
[11]R. Juza, and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938)
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明