博碩士論文 93222017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.133.152.26
姓名 田明翰(Ming-Han Ten)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
(STM and PES studies of metal nano-clusters on thin film Al2O3/ NiAl (100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 在氧化鋁上成長金與白金的和金奈米粒子
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們分別以掃描穿隧電子顯微鏡(STM)研究奈米金粒子以及同步輻射光源的光激發電子能譜儀(PES)研究白金奈米粒子在氧化鋁薄膜上的成長. 我們在超高真空系統中, 利用物理氣象沉積法將奈米粒子成長在300 K, 450 K, 和 570K 的完整有序氧化鋁薄膜Al2O3/NiAl(100)上. 從STM圖形可以觀察到,金奈米粒子在低鍍量時以二維的模式成長.而在較高的樣品準備溫度(450 K和570 K), 則會出現準二維以及較大的三維奈米金粒子共存.
以同步輻射光源的光激發電子能譜儀(PES)研究白金奈米粒子在氧化鋁薄膜上的成長.白金奈米粒子的束縛能隨著升高的樣品溫度往高能量方向偏移.這指出白金奈米粒子可能形成氧化態的粒子.甲醇吸附在白金上當樣品溫度大約120 K時, 然後退火到不同的高溫.我們可以發現到甲醇分解成碳氫化合物在大約380 K時, 而且表面上的汙染物會減少甲醇的分解.
摘要(英) We have studied the Au nano-clusters on the well defined support by using scanning tunneling microscopy (STM) and Pt nano-clusters by using synchrotron-based high-resolution photoemission spectroscopy (PES). The nano-clusters were vapor deposited on the well-ordered Al2O3 grown on NiAl (100) in the ultrahigh vacuum environment at 300 K, 450 K, and 570 K (600K for Pt). The STM images show that the Au nano-clusters form two-dimensional (2D) clusters at small coverage. At the elevated sample prepare temperature, the quasi-2D (height of 1 – 2 atomic layers) and greater three–dimensional clusters coexist.
We studied Pt nano-clusters on the well-ordered Al2O3 by using PES. The Pt 4f binding energy (BE) shifts to higher values with the sample temperature. This implies that the Pt clusters are oxidized at the higher sample temperature. The methanol was adsorbed on Pt clusters at 120 K and subsequently annealed to different temperatures. The methanol decomposes to hydrocarbon at sample temperature of annealing to 380 K. The amount of adsorption methanol was decreased with the increasing contamination.
關鍵字(中) ★ 白金
★ 掃描穿隧電子顯微鏡
★ 同步輻射光
★ 金
★ 氧化鋁
關鍵字(英) ★ PES
★ Al2O3
★ NiAl
★ STM
★ Pt
★ Au
論文目次 Chapter 1 Introduction-------------------1
Reference--------------------------------4
Chapter 2 Basic concepts-----------------6
2.1 Al2O3/NiAl(100)----------------------6
2.1.1 The properties of NiAl (100)-------6
2.1.2 θ-Al2O3 growth on NiAl (100)------7
2.2 Metal clusters growth on oxide surface--9
2.2.1 Interaction of metal with oxide film--11
2.2.2 Literature survey for Au and Pt clusters on oxide surface-------------------------------------12
2.3 Energy application from Methanol--------13
2.3.1 The Chemical reaction for methanol----13
2.3.2 The thermodynamic for methanol reaction and adsorption----------------------------------15
Reference-----------------------------------19
Chapter 3 Introduction to the Instruments---23
3.1 Ultrahigh Vacuum (UHV) system-----------23
3.1.1 STM system----------------------------24
3.1.2 XPS system----------------------------25
3.2 Scanning Tunneling Microscopy (STM)-----26
3.3 X-ray photoelectron spectroscopy (XPS)--30
3.4 Experimental Methods--------------------33
3.4.1 clean sample--------------------------33
3.4.2 The growth of θ-Al2O3----------------35
3.4.3 Metal deposition on Al2O3-------------36
3.4.4 Methanol adsorption and decomposition-36
Reference-----------------------------------38
Chapter 4 Results and discussions-----------39
4.1 Growth of Au Nano-cluster on Al2O3/NiAl(100)--39
4.2 Methanol decomposition on Pt/Al2O3/NiAl(100)--49
4.2.1 PES study for Pt/Al2O3/NiAl (100)-----49
4.2.2 Methanol adsorption and decomposition on Pt/Al2O3/NiAl (100)-------------------------57
Reference-----------------------------------71
Chapter 5 Conclusions-----------------------74
參考文獻 chapter 1
[1]. N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286 (1993) 246-260.
[2]. Yuhai Hu, Keith Griffiths, Surf. Sci. 601 (2007) 2467–2472.
[3]. V.I. Parvulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233.
[4]. V.P. Zhdanov, B. Kasemo, Appl. Catal. A 187 (1999) 61.
[5]. M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez, Catal. Today 29 (1996) 443-447.
[6]. K. Kordesch, G. Simader, Fuel Cells and their Applications, Weinheim, 1996
[7]. M. M. Schubert, M. J. Kahlich, H. A. Gasteiger, R. J. Behm, J. Power Sources 84, 175 (1999).
[8]. T. V. Choudhary, D. W. Goodman, Catal. Today 77, 65 (2002).
[9]. G.A. Attard, K. Chibane, H.D. Ebert, R. Parsons, Surf. Sci. 224 (1989) 311-326.
[10]. O. Rodr_ıguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, H.-J. Freund, Surf. Sci. 566–568 (2004) 740–745.
[11]. Bor-Ru Shue and D. R. Strongin, Journal of Catalysis 154 (1995) 379-390.
[12]. Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and Charles T. Campbell, J. Phys. Chem. B 105 (2001) 9273-9279.
[13]. D.R. Mullins, M.D. Robbins, J. Zhou, Surf. Sci. 600 (2006) 1547-1558.
[14]. V. Johanek, N. Tsud, V. Matolin, I. Stara, Vacuum 63 (2001) 15 – 22.
[15]. D. A. Outka and R. J. Madix, J. Am. Chem. Soc. 109 (1987) 1708.
[16]. M. A. Lazaga, D. T. Wickham, D. H. Parker, G. N. Kastanas and B. E. Koel, Am. Chem. Soc. Symp. Ser. 523 (1993) 90.
[17]. C. P. Vinod, J. W. Niemantsverdrieta and B. E. Nieuwenhuys, Phys. Chem. Chem. Phys. 7 (2 0 0 5) 1 8 2 4 – 1 8 2 9.
[18]. Feg-Wen Chang, Hsin-Yin Yu, L. Selva Roselin, Hsien-Chang Yang, Ti-Cheng Ou, Applied Catalysis A: General 302 (2006) 157 – 167.
[19]. H.M. Ajo, V.A. Bondzie, and C.T. Campbell, Catalysis Letter 78 (2002) Nos.1 – 4.
[20]. M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez, Catalysis Today 29 (1996) 443 – 447.
[21]. N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286 (1993) 246 – 260.
[22]. G.A. Attard, K. Chibane, H.D. Ebert and R. Parsons, Surf. Sci. 224 (1989) 311 – 326.
[23]. Brett A. Sexton, Surf. Sci. 102 (1981) 271 – 281.
[24]. R.J. Gorte, L.D. Schmidt, J.L. Gland, Surf. Sci. 109 (1981) 367–380.
[25]. J.M. Gohndrone, R.I. Masel, Surf. Sci. 209 (1989) 44–56.
[26]. Max Montano, Miquel Salmeron, Gabor A. Somorjai, Surf. Sci. 600 (2006) 1809–1816.
[27]. Marcus BaÈ umer, Hans-Joachim Freund, Surf. Sci. 61 (1999) 127±198.
[28]. Trissa Joseph, K. Vijay Kumar, A.V. R.amaswamy, S.B. Halligudi, Catalysis Communications 8 (2007) 629 – 634.
[29]. B. C. Bond, Surf. Sci. 156 (1985) 966 .
chapter 2
[1]. From atoms to crystallites: adsorption on oxide-supported metal Particles.
Martin Frank and Marcus Ba. umer, Phys. Chem. Chem. Phys..
[2]. Bor-Ru Sheu and D. R. Strongin, Journal of ctalysis 154 (1995) 379-390.
[3]. Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80 (1998) 2877.
[4]. D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141.
[5]. P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95-109.
[6]. A. K. Santra and D.W. Goodman1, J. Phys.: Condens. Matter 14 (2002) R31–R62.
[7]. K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b(Springer, Heidelberg, 1975).
[8]. R. Franchy, Surface Science Reports 38 (2000) 195 – 294.
[9]. Qiang Fua, Thomas Wagnera, Surface Science Reports 62 (2007) 431–498.
[10]. J. Goniakowski, Electronic structure of MgO-supported palladium films:
Influence of the adsorption site, Phys. Rev. B 57 (1998) 1935.
[11]. R.J. Lad, Interactions at metal/oxide and oxide/oxide interfaces studied
by ultrathin film growth on single-crystal oxide substrate, Surf. Rev. Lett.
2 (1995) 109.
[12]. Qiang Fua, Thomas Wagnera, Surface Science Reports 62 (2007) 431–498.
[13]. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J.Genet and B.Delmon, J. Catal, 144 (1993) 175 .
[14]. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115 (1989) 301.
[15]. M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647.
[16]. X. Lai, T.P. St, M. Valden, D.W. Goodman, Surf. Sci. 59 (1998) 25.
[17]. Tatyana E. Shubina, Christoph Hartnig and Marc T. M. Koper, Phys. Chem. Chem. Phys, 6 (2004) 4215-4221.
[18]. Kizhakevariam, N. Stuve, E. M. Surf. Sci. 286 (1993) 246-260.
[19]. W.A. Brown, D.A. King, J. Phys. Chem. B 104 (2000) 2578.
[20]. E.H.G. Backus, A. Eichler, M.L. Grecea, A.W. Kleyn, M. Bonn, J.
Chem. Phys. 121 (2004) 7946.
[21]. Gang Wu , Bo-Qing Xu, Journal of Power Sources 174 (2007) 148–158.
[22]. David E. Gawthrope, Adam F. Lee and Karen Wilson, Phys. Chem. Chem. Phys. 6 (2004) 3907-3914.
[23]. Marcus BaÈ umer, Hans-Joachim Freund, Surf. Sci. 61 (1999) 127±198.
[24]. Feg-Wen Chang, Hsin-Yin Yu, L. Selva Roselin, Hsien-Chang Yang, Applied Catalysis A: General 290 (2005) 138-147.
[25]. C. Lemire, R. Meyer, Sh.K. Shaikhutdinov , H.-J. Freund, Surf. Sci. 552 (2004) 27–34.
[26]. M. Klimenkov, H.Kuhlenbeck, S.A. Nepijko, Surf. Sci. 539 (2003) 31-36.
[27]. S.D. Sartle, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978 – 4985.
[28]. G.A. Attard, K. Chibane, H.D. Ebert and R. Parsons, Surf. Sci. 224 (1989) 311 – 326.
[29]. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1998) pp. 1229 – 1231.
[30]. Heinz Heinemann, Gabor A. Somorjai, Catalysis and Surface Science.
[31]. Toshiyuki Abe, Masao Kaneko, Prog. Polym. Sci. 28 (2003) 1441–1488.
[32]. Fuqiang Liu, Chao-Yang Wang, Electrochimica Acta 53 (2008) 5517–5522.
[33]. Gyeong-Su Park, Chanho Pak, Young-Su Chung, Ji-Rae Kim, Woo Sung Jeon, Yoon-Hoi Lee, Kihong Kim, Hyuk Chang and Doyoung Seung, Decomposition of Pt-Ru anode catalysts in direct methanol fuel cells.
[34]. Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl. Catal. A 171, (1998) 123.
[35]. C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93 (1993) 245.
[36]. M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168 (1998) 307.
[37]. S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J. Catal. 194, (2000) 373.
[38]. D. R. Stull, E. F. Westrum, Jr. and G. F. Sinke, The Chemical Thermodynamic of Organic Compounds, Wiley, 1969.
[39]. Brett A. Sexton, Surf. Sci. 102 (1981) 271 – 281.
[40]. G.A. Attard, K. Chibane, H.D. Ebert and R. Parsons, Surf. Sci. 224 (1989) 311 – 326.
[41]. N. Kizhakevariam and E. M. Stuve, Surf. Sci. 286 (1993) 246 – 260.
[42]. Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and
Charles T. Campbell, J. phys. Chm. B 105 (2001) 9273 – 9279.
[43]. J.E. Demuth and H. Ibach, Chem. Phys. Lett. 60 (1979) 395.
[44]. K. Christmann and J.E. Demuth, J. Chem. Phys. 76 (1982) 6308.
[45]. J.E. Parmeter, X. Jiang and D.W. Goodman, Surf. Sci 240 (1990) 85.
[46]. J. Wang and R.I. Masel, Surf. Sci. 235 (1991) 199.
[47]. O. Rodriguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, H. J. Freund, Surf. Sci. 740 (2004) 566-568.
[48]. Jianhua wang and R. I. masel, J. Am. Chem. Soc. 113 (1991) 5850 – 5856.
[49]. J. –J. Chen, Z. –C. Jiang, Y. Zhou, B.R. Chakraborty, N. Winogard, Surf. Sci. 328 (1995) 248.
[50]. M. Rebholz, N. Kruse, J. Chem. Phys. 95 (1991) 7745.
[51]. S. Schauermann, J. Hoffmann, V. Joh_anek, J. Hartmann, J. Libuda, H.-J. Freund, Catal. Lett. 84 (2002) 209.
[52]. C. P. Vinod, J. W. Niemantsverdriet, B. E. Nieuwenhuys, Phys. Chem. Chem. Phys. 7, 1824 (2005).
[53]. A. K. Chen and R. I. Masel, Surf. Sci. 17 (1995) 343.
[54]. Jianhua Wang and R.I. Masel, Surf. Sci. 243 (1991) 199 – 209.
[55]. Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and
Charles T. Campbell, J. Phys. Chem. B 105 (2001) 9273-9279.
chapter 3
[1]. 真空技術與應用 (Vacuum technology & Application), 國家儀器研究院-儀器科技研究中心..
[2]. Gary Attard, Colin Barnes, Surface, 1998.
[3]. L. J. WHITMAN, Naval Research Laboratory, Washington, DC 20375-5342.
[4]. John C. Vickerman, surface analysis---the principal techniques, Jon wiley & Sons, 1997.
[5]. A.K. Santra and D.W. Goodman1, J. Phys.: Condens. Matter 14 (2002) R31–R62
[6]. John F. Watts, John Wolstenholme, An introduction to surface analysis by XPS and AES.
chapter 4
[1]. M. Haruta, N. Yamada, T. Kobayashi, S. Ijima, J. Catal. 115 (1989) 301.
[2]. M. Haruta, Catal. Today 36 (1997) 153.
[3]. M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647.
[4]. M.S. Chen, D.W. Goodman, Science 306 (2004) 252.
[5]. W.C. Lin, C.C. Kuo, M.F. Luo, K.J. Song, M.S. Lin, Appl. Phys.Lett. 86 (2005) 043105.
[6]. M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, Nanotechnology 17
(2006) 360.
[7]. M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, T.Y. Yang, P.L. Chen, C.C. Kuo, J. Chem. Phys. 124 (2006) 164709.
[8]. S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978.
[9]. Marcus BaÈ umer, Hans-Joachim Freund, Surf. Sci. 61 (1999) 127±198.
[10]. C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.
[11]. E. Wahlstom, N. Lopez, R. Schaub, P. Thostrup, A. Ronnau, C.Africh, E. Lagasgaard, J.K. Norskov, F. Besenbacher, Phys. Rev. Lett. 90 (2003) 026101.
[12]. C. Lemire, R. Meyer, Sh.K. Shaikhutdinov *, H.-J. Freund, Surf. Sci. 552 (2004) 27–34.
[13]. S.C. Parker, A.W. Grant, V.A. Bondzie, C.T. Campbell, Surf. Sci. 441 (1999) 10.
[14]. L. Zhang, R. Persaud, T.E. Madey, Phys. Rev. B 56 (1997) 10549.
[15]. F.M. Ross, T. Tersoff, R.M. Tromp, Phys. Rev. Lett. 80 (1998) 984.
[16]. S.D. sartale, M.F. Luo , H.W. Shiu , M.H. Ten, J.W. Hung, Surf. Sci. 600 (2002) 4978 – 4985.
[17]. P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, T. Tabakova, J. Mol. Catal. A 213 (2004) 235.
[18]. M. G. Mason, Phys. Rev. B 27 (1982) 748.
[19]. M. K. Bahl, S. C. Tsai, and Y. W. Chung, Phys. Rev. B 21 (1980) 1344.
[20]. Z. Yang, R. Wu, D.W. Goodman, Phys. Rev. B 61 (2000) 14066.
[21]. Gang Wu, Bo-Qing Xu, Journal of Power Sources 174 (2007) 148–158.
[22]. Pedro A.P. Nascente, Journal of Molecular Catalysis A: Chemical 228 (2005) 145–150.
[23]. M.F. Luo , H.W. Shiu , M.H. Ten , S.D. Sartale , C.I. Chiang , Y.C. Lin , Y.J. Hsu, Surf. Sci. 602 (2008) 241 -248
[24]. K. Luo, D. Y. Kim, D. W. Goodman, Journal of Molecular Catalysis A: Chemical 167 (2001) 191-198.
[25]. C.K. Rhee, M. Wakisaka, Y.V. Tolmachev, C.M. Johnston, R. Haasch, K. Attenkofer, G.Q. Lu, H. You, A. Wieckowski, J. Electroanal. Chem. 367 (2003) 554–555.
[26]. Emrah Ozensoy, Charles H. F. Peden, and Ja´nos Szanyi, J. Phys. Chem. B 110 (2006) 17001-17008.
[27]. N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286 (1993) 246 – 260.
[28]. C. P. Vinod, J. W. Niemantsverdrieta and B. E. Nieuwenhuys, Phys. Chem. Chem. Phys. 7 (2 0 0 5) 1 8 2 4 – 1 8 2 9.
[29]. O. Rodr ıguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter , H.-J. Freund, Surf. Sci. 566–568 (2004) 740–745.
[30]. J.E. Demuth and H. Ibach, Chem. Phys. Lett. 60 (1979) 395.
[31]. K. Christmann and J.E. Demuth, J. Chem. Phys. 76 (1982) 6308.
[32]. J. Hrbek, R.A. de paola and F.M. H offman, J. Chem. Phys. 81 (1984) 2818.
[33]. Fuente, O. R. D. L.; Borasio, M. P.; Galletto Rupprechter, G, Freund, H.-J, Surf. Sci. 740 (2004) 566-568.
[34]. N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286 (1993) 246 – 260.
[35]. G.A. Attard, K. Chibane, H.D. Ebert and R. Parsons, Surf. Sci. 224 (1989) 311 – 326.
[36]. Brett A.Sexton, Surf. Sci. 102 (1981) 271 – 281.
[37]. Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and
Charles T. Campbell, J. Phys. Chem. B 105 (2001) 9273-9279.
[38]. K.D. Gibson and L.H. Dubois, Surf. Sci. 233 (1990) 59 – 64.
[39]. Jianhua Wang and R.I. Masel, Surf. Sci. 243 (1991) 199 – 209.
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2009-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明