博碩士論文 104350601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.17.181.122
姓名 陳明月(Karn Narkwiboonwong)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
(Rice Mapping using Sentinel-1 SAR imagery in Ayutthaya province, Central Thailand)
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 都市三維結構變遷之分析-以臺灣臺北市為例
★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例
★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例★ 分析降雨及不透水面對台南水患發生之影響
★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例
★ 母岩裸露指標之建立並應用於崩塌判釋與監測★ 應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對泰國而言,水稻是一個穩定且重要的出口經濟作物,泰國也是最重要水稻出口國之一。隨著人口的增加及氣候變遷,水稻監測在許多國家已經變成一個重要的議題。在泰國,水稻監測是非常重要且必需的,因為水稻是國家最重要的經濟及糧食作物,全國約有百分之六十的農夫的主要種植作物為水稻。對於大面積的水稻種植地區而言,以人力調查進行水稻監測為一耗時且成本高的調查方式,近年來,使用遙測技術進行水稻監測則可以較低的成本、較高的效率取得相當精確地監測成果。
大城府省(Ayutthaya)省位於泰國中部,是泰國重要的水稻生產省分。依據水稻生長物候,泰國中部的水稻生長有兩期(溼季與乾季),水稻在溼季生長時是多雲且多雨的,不利於使用光學衛星進行監測任務;近年來,合成孔徑雷達衛星在水稻判識亦扮演重要的角色,由於合成孔徑雷達衛星以主動式微波訊號進行地面觀測,微波訊號可以穿透雲層,在多雲覆蓋的天候仍有極佳的監測能力,過去研究亦指出合成孔徑雷達適合對於在雲雨天氣下種植的水稻進行監測。
本研究針對泰國中部大城府省地區,利用2015年(5月-11月)溼季及2016年(5月-11月)乾季的Sentinel-1 VH極化影像,監測並繪製該省的水稻種植範圍。本研究主要分為以下四個步驟:第一步,將原始影像進行前處理,包括輻射校正、幾何校正及雜訊濾除;第二步,配合水稻物候,並考慮研究區內耕地種作、收成時間的差異性,利用多時序合成孔徑雷達影像計算動態NDSI(Normalized Difference Sigma Naught Index);第三步驟,以expectation–maximization (EM)演算法訂定閾值進行水稻分類;第四步,利用地真資料進行判釋成果的精度評估。研究成果顯示溼季水稻分類結果的總體精度與Kappa係數分別為80.1%與0.60;乾季水稻分類結果的總體精度為83.3%,Kappa係數為0.67。研究結果顯示Sentinel-1 VH極化影像對於泰國中部水稻的判識有相當好的成果,而本研究提出之水稻判釋方法具有相當好的應用潛力。
摘要(英)
Rice is staple food and an economically important export crop of Thailand. Thailand, therefore, is one of the largest rice producers and exporters in the world. With the increase in population and climate change, rice monitoring has become an essential issue around the world. The rice monitoring in Thailand is highly significant and indispensable, as rice is the country’s most important crop, and around 60 percent of Thai farmers mainly plant rice. The rice monitoring is also necessary for economic and ecological development planning. Traditionally, statistics data from the field survey was used to map rice area and estimate rice production. However, the field surveying is time consuming and costly. Thus, remote sensing monitoring has been widely used instead due to its higher effectiveness in rice mapping, using the optical image or synthetic aperture radar (SAR) image. Following the rice crop calendar, there are two rice growing seasons (wet season and dry season) in the Central of Thailand, a very important rice production region in the country. Rice growing season is in the rainy season with cloudy weather which limits the optical sensors usually affected by cloud cover. Hence, the optical sensors are difficult to apply for the rice monitoring in cloudy wet-season. Recently, SAR imagery has played a more important role in rice crop mapping. Many studies indicated that SAR has been a suitable tool for monitoring rice cultivated in cloudy and rainy weather because it uses microwave radiation which can pass through clouds.
The aim of this study is to map the rice-growing areas in Ayutthaya province, Central Thailand using Sentinel-1 VH-polarized SAR images during the wet season (May-November) in 2015 and the dry season (November-April) in 2016. Four essential steps were required to conduct the study: (1) image pre-processing, including radiometric correction, geometric correction, and speckle noise removal, (2) Dynamic Normalized Difference Sigma Naught Index (NDSI) calculation, using time series SAR images to better detect rice fields when they have different growing time, (3) rice growing area classification with applying a threshold derived from expectation–maximization (EM) algorithm, and (4) mapping accuracy assessment, by comparing with ground reference data. The classification result for the wet-season rice indicated the overall accuracy of 80.1% and Kappa coefficient of 0.60. For the dry-season rice, the overall accuracy and kappa coefficient were 83.3% and 0.67, respectively. This study demonstrates the potential of the applicability of Sentinel-1 VH-polarized SAR imagery for rice area mapping in Central Thailand.
關鍵字(中) ★ 水稻監測
★ 泰國
★ 合成孔徑雷達
★ Sentinel-1
★ NDSI
關鍵字(英) ★ Rice monitoring
★ Thailand
★ Synthetic Aperture Radar
★ Sentinel-1
★ NDSI
論文目次
CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
ACRONYMS ix
NOTATIONS xi
CHAPTER 1 – INTRODUCTION 1
1.1 Research Background 1
1.2 Statement of Research Problem 5
1.3 Research Objectives 6
CHAPTER 2 – LITERATURE REVIEW 7
2.1 Rice crop spatial distribution 7
2.2 Rice phenological analysis for rice mapping 9
2.3 Rice mapping using optical satellite imagery 11
2.4 Methods of using SAR backscatter and rice phenology 15
2.5 Interaction between rice phenology and polarization 16
2.6 Effect of SAR frequency on rice mapping 17
2.7 Mapping rice with analyzing the temporal change of backscatter in SAR images 17
2.8 Image classification applied with SAR data 18
2.9 Rice mapping in Thailand 19
CHAPTER 3 – STUDY AREA 21
3.1 General Information 21
3.2 Climate 23
3.3 Water Resource 24
3.4 Rice Cropping Calendar 25
CHAPTER 4 – DATA COLLECTION 27
4.1 Satellite Data 27
4.1.1 Sentinel-1 Data 27
4.1.2 Digital Elevation Model Data 30
4.2 Ancillary Data 31
4.2.1 Land Use /Land Cover Data 31
4.2.2 GISTDA’s Rice Map 31
CHAPTER 5 – METHOD 33
5.1 Image Pre-processing 34
5.2 Normalized Difference Sigma Naught Index (NDSI) calculation 35
5.2.1 Normalization of Backscatter Value 35
5.2.2 Calculation of Normalized Difference Sigma Naught Index (NDSI) 35
5.3 Rice Area Classification 38
5.3.1 Image Segmentation 38
5.3.2 Expectation Maximization (EM) algorithm for change detection 39
5.3.3 Thresholding 40
5.3.4 Non-rice areas masking 41
5.4 Accuracy Assessment 42
CHAPTER 6 – RESULTS 44
6.1 The wet-season rice crop classification result 44
6.1.1 The early rice 44
6.1.2 The late rice 46
6.1.3 Merging the early and late rice 48
6.2 The dry-season rice crop classification result 52
CHAPTER 7 – DISCUSSION 58
7.1 Discussion of Sentinel-1 SAR imagery 58
7.2 Discussion of classification method 60
7.3 Discussion of ground reference data 63
CHAPTER 8 - CONCLUSIONS AND RECOMMENDATIONS 66
8.1 Conclusions 66
8.2 Recommendations 67
REFERENCES 69
參考文獻
Aschbacher, J., Pongsrihadulchai, A., Karnchanasutham, S., Rodprom, C., Paudyal, D. R., Le Toan, T., 1995. Assessment of ERS-1 SAR data for rice crop mapping and monitoring. Geoscience and Remote Sensing Symposium, IGARSS 1995, pp. 2183–2185.
Baatz, M., Schape, A., 2000. Multi resolution segmentation-an optimization approach for high quality multi scale image segmentation. Angewandte Geographische Informations verarbeitung XII. Karlsruhe, Germany, pp. 12−23.
Bailey, K. D., Frohn, R.C., Beck, R.A., Price, M.W., 2001. Remote sensing analysis of
wild rice production using Landsat 7 for the leech lake band of Chippewa in Minnesota. Photogrammetric Engineering and Remote Sensing, 67, pp. 189–192.
Bilmes, J., 1998. A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden markov models. Technical Report ICSI-TR-97-02, University of Berkeley.
Bouvet, A., Le Toan, T., 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115(4), pp. 1090–1101.
Chakraborty, M., Panigrahy, S., 2000. A processing and software system for rice crop
inventory using multi-date RADARSAT scanSAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 55, pp. 119–128.
Chang, K.W., Shen, Y., Lo, J.C., 2005. Predicting rice yield using canopy reflectance
measured at booting stage. Agronomy Journal, 97, pp. 872–878.
Chang, L.Y., 2013. Change detection using optical satellite images (Doctoral dissertation, National Central University, Taiwan). Retrieved April 1, 2017, from http://140.113.39.130/cgi-bin/gs32/ncugsweb.cgi/ccd=dXGEmp/record?r1=1&h1=0#XXXX.
Chen, C., McNairn, H., 2006. A neural network integrated approach for rice crop monitoring. International Journal of Remote Sensing, 27, pp. 1367–1393.
Chen, C.F., Son, N.T., Chen, C.R., Chang, L.Y., Chiang, S.H., 2016. Rice crop mapping using Sentinel-1A phenological metrics. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, pp. 863-865.
Chen, C.F., Son, N.T., Chang, L.Y., 2012. Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data. Advances in Space Research, 49, pp. 292–301.
Chen, J.B., Chen, C.F., Son, N.T., Chang, L.Y., Chen, C.R., 2015. Rice crop mapping with RADARSAT-2 data in the middle of Taiwan. 36th Asian Conference on Remote Sensing, Manila, Philippines, October 19-23, 2015.
Chen, J.S., Lin, H., Pei, Z.Y., 2007. Application of ENVISAT ASAR data in mapping rice crop growth in southern china. IEEE Geoscience and Remote Sensing Letters, 4, pp. 431–435.
Cheng, Q., 2006. Multisensor comparisons for validation of MODIS vegetation indices. Pedosphere, 16, pp. 362–370.
Congalton, R. G., Green, K., 1999. Assessing the accuracy of remotely-sensed data: principles and practices. Lewis Publishers, Boca Raton, Florida, USA.
Cota, N., Kasetkasem, T., Rakwatin, P., Chanwimaluang, T., Kumazawa, I., 2015. Rice phenology estimation using SAR time-series data. 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Hua-Hin, 2015, pp. 1-5.
Dao, P.D., Liou, Y.A., 2015. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data. Remote Sensing, 7(5), pp. 5077–5097.
Devadas, R., Denham, R.J., Pringle, M., 2012. Support Vector Machine classification of object-based data for crop mapping, using multi-temporal Landsat imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7, pp. 185-190.
Diuk-Wasser, M.A., Bagayoko, M., Sogoba, N., Dolo, G., Touré, M.B., Touré, S.F., Taylor, C.E., 2006. Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM+ sensor data. International Journal of Remote Sensing, 25, pp. 359–376.
DOAE (Department Of Agricultural Extension), 2015. Agriculture information in Ayutthaya, Retrieved August 16, 2016, from http://www.ayutthaya.doae.go.th/agriculture.htm.
Dong, J., Xiao, X., 2016. Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 15(1), pp. 214-227.
ESA (European Space Agency), 2013. Sentinel-1 User Handbook, Retrieved August 3, 2016, from https://sentinel.esa.int/documents/247904/685163/Sentinel-1_User_Handbook.
Fang, H., 1998. Rice crop area estimation of an administrative division in China using remote sensing data. International Journal of Remote Sensing, 19, pp. 3411–3419.
Fang, H.L., Wu, B.F., Liu, H.Y., Huang, X., 1998. Using NOAA AVHRR and landsat TM to estimate rice area year-by-year. International Journal of Remote Sensing, 19, pp. 521–525.
FAO (Food and Agricultural Organization), 2001. The State of Food Insecurity in the World 2001. Rome, Italy.
FAO (Food and Agricultural Organization), 2014. FAO Statistical Yearbook 2014, Retrieved October 25, 2016, from http://www.fao.org/3/a-i3590e.pdf.
FAO (Food and Agricultural Organization), 2014. FAOSTAT of rice crop, Retrieved October 25, 2016, from http://www.fao.org/faostat/en/#data/QC/visualize.
FAO (Food and Agricultural Organization), 2015. The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. Rome, Italy.
Ferrero, A., 2007. Rice scenario in the European Union, Retrieved February 22, 2017, from http://revues.cirad.fr/index.php/cahiers-agricultures/article/viewFile/30654/30414.
Furuta, R., Tomiyama, N., 2011. A study of detection of landslide disasters due to the Pakistan Earthquake using ALOS data. 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, April 10-15, 2011.
Gumma, M.K., Nelson, A., Thenkabail, P.S., Singh, A.N., 2011. Mapping rice areas of South Asia using MODIS multitemporal data. Journal of Applied Remote Sensing, 5(1), 053547, doi: 10.1117/1.3619838.
Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S., Nelson, A., 2014. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS Journal of Photogrammetry and Remote Sensing, 91, pp. 98–113.
Inoue, Y., Kurosu, T., Maeno, H., Uratsuka, S., Kozu, T., Dabrowska-Zielinska, K., Qi, J., 2002. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sensing of Environment, 81, pp. 194–204.
Kamthonkiat, D., Honda, K., Turral, H., Tripathi, N.K., Wuwongse, V., 2005. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data. International Journal of Remote Sensing, 26, pp. 2527–2547.
Kane, M., 2014. GIS & Remote Sensing Applications in Food Security. Hand out, NRS, 509: Concepts in GIS & Remote Sensing, University of Rhode Island.
Karakış, S., Marangoz, A. M., Büyüksalih, G., 2006. Analysis of segmentation parameters in Ecognition software using high resolution Quickbird MS imagery. ISPRS Workshop on Topographic Mapping from Space, Ankara, Turkey, February 14-16, 2006.
Khobkhun, B., Prayote, A., Rakwatin, P., Dejdumrong, N., 2012. Rice phenology monitoring in Thailand using time series MODIS imagery. 33rd Asian Conference on Remote Sensing, Pattaya, Thailand, November 26-30, 2012.
Kim, Y.H., Hong, S.Y., Lee, H.Y., 2008. Radar backscattering measurements of paddy rice field using multifrequency (L, C and X) and full polarization. Geoscience and Remote Sensing Symposium, IGARSS 2008, IEEE International, 4, pp. 553–556.
Kim, Y.H., Hong, S.Y., Lee, H.Y., 2009. Estimation of paddy rice growth parameters using L-, C-, X-bands polarimetric scatterometer. Korean Journal of Remote Sensing, 25, pp. 31–44.
Kuenzer, C., Knauer, K., 2013. Remote sensing of rice crop areas. International Journal of Remote Sensing, 34(6), pp. 2101–2139.
Kupidura, P., 2016. Comparison of filters dedicated to speckle suppression in SAR images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, pp. 269-276.
Kurosu, T., Fujita, M., Chiba, K., 1995. Monitoring of rice crop growth from space using the ERS-1 C-Band SAR. IEEE Transactions on Geoscience and Remote Sensing, 33, pp. 1092–1096.
Kurosu, T., Fujita, M., Chiba, K., 1997. The identification of rice fields using multitemporal ERS-1 C band SAR data. International Journal of Remote Sensing, 18, pp. 2953–2965.
LDD (Land Development Department), 2015. Land use type in Ayutthaya, Retrieved May 20, 2016, from http://www1.ldd.go.th/WEB_OLP/Lu_58/Lu58_C/AYA58.htm.
Le Toan, T., Ribbes, F., Wang, L., Floury, N., Ding, K., Kong, J.A., Fujita, M., Takashi, K., 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. Geoscience Remote Sensing, 35 (1), pp. 41–56.
Mansaray, L.R., Huang, W.J., Zhang, D.D., Huang, J.F., Li, J., 2017. Mapping rice fields in urban Shanghai, Southeast China, using Sentinel-1A and Landsat 8 datasets. Remote Sensing, 9(3), pp. 257, doi: 10.3390/rs9030257.
Mascarenhas, N.D.A., 1997. An overview of speckle noise filtering in SAR images. Image Processing Techniques, First Latino-American Seminar on Radar Remote Sensing, pp. 71-79.
McCloy, K.R., Smith, F.R., Robinson, M.R., 1987. Monitoring rice areas using Landsat
MSS data. International Journal of Remote Sensing, 8, pp. 741–749.
Mosleh, M.K., Hassan, Q.K., 2014. Development of a remote sensing-based ‘‘Boro” rice mapping system. Remote Sensing, 6, pp. 1938–1953.
Mosleh, M. K., Hassan, Q. K., Chowdhury, E. H., 2015. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors, 15(1), pp. 769-791.
Natural Resources Canada, 2016. Image enhancement, Retrieved March 25, 2017, from http://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-resources/9389.
Nelson, A., Setiyono, T., Rala, A.B., Quicho, E.D., Raviz, J.V., Abonete, P.J., Maunahan, A.A., Garcia, C.A., Bhatti, H.Z.M., Villano, L.S., Thongbai, P., Holecz, F., Barbieri, M., Collivignarelli, F., Gatti, L., Quilang, E.J.P., Mabalay, M.R.O., Mabalot, P.E., Barroga, M.I., Bacong, A.P., Detoito, N.T., Berja, G.B., Varquez, F., Wahyunto, Kuntjoro, D., Murdiyati, R., Pazhanivelan, S., Kannan, P., Mary, P.C.N., Subramanian, E., Rakwatin, P., Intrman, A., Setapayak, T., Lertna, S., Minh, V.Q., Tuan, V.Q., Duong, T.H., Quyen, N.H., Kham, D.V., Hin, S., Veasna, T., Yadav, M., Chin, C., Ninh, N.H., 2014. Towards an operational SAR-based rice monitoring system in Asia: examples from 13 demonstration sites across Asia in the RIICE project. Remote Sensing, 6, pp. 10773–10812.
Nguyen, D.B., Clauss, K., Cao, S., Naeimi, V., Kuenzer, C., Wagner, W., 2015. Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data. Remote Sensing Letters, 7, pp. 15868–15893.
Nguyen, L.D., Phung, H.P., 2012. Rice crop monitoring in the Mekong Delta, Vietnam using TerraSar-X and EnviSat-Asar radar data. International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, 16-20 October 2012, Ho Chi Minh, Vietnam, October 16-20, 2012.
Nuarsa, I.W., Nishio, F., Hongo, C., Mahardika, I.G., 2012. Using variance analysis of multitemporal MODIS images for rice field mapping in Bali Province, Indonesia. International Journal of Remote Sensing, 33, pp. 5402–5417.
OAE (Office of Agricultural Economics), 2016. Agricultural statistics of Thailand 2015. Center for Agricultural Information, Ministry of Agriculture and Co-operatives, Bangkok, pp. 3-5.
Office of Ayutthaya Province, 2015. Annual summary report of Ayutthaya 2015, Retrieved February 15, 2017, from http://ww2.ayutthaya.go.th/ebook/detail/1/data.html.
Oguro, Y., Suga, Y., Takeuchi, S., Ogawa, M., Konishi, T., Tsuchiya, K., 2001. Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima. Advances in Space Research, 28, pp. 195–200.
Oh, Y.S., Hong, S.Y., Kim, Y.J., Hong, J.Y., Kim, Y.H., 2009. Polarimetric backscattering coefficients of flooded rice fields at L- and C-bands: Measurements, modeling, and data analysis. IEEE Transactions on Geoscience and Remote Sensing, 47, pp. 2714–2721.
Oyoshi, K., Sobue, S., 2011. Paddy field mapping by integrating ALOS AVNIR-2 and PALSAR data. 32nd Asian Conference on Remote Sensing, Taipei, Taiwan, October 3-7, 2011.
Oyoshi, K., Tomiyama, N., Okumura, T., Sobue, S., Sato, J., 2015. Mapping rice-planted areas using time-series synthetic aperture radar data for the Asia-RiCE activity. Paddy and Water Environment, doi: 10.1007/ s10333-014-0515-x.
Panigrahy, S., Chakraborty, M., Sharma, S. A., Kundu, N., Ghose, S.C., Pal, M., 1997. Early estimation of rice area using temporal ERS-1 synthetic aperture radar data-a case study for the Howrah and Hughy districts of West Bengal, India. International Journal of Remote Sensing, 18, pp. 1827–1833.
Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. Object-based crop identification using multiple vegetation index, textural features and crop phenology. Remote Sensing of Environment, 115, pp. 1301–1316.
Pinter, Jr. P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., Upchurch, D. R., 2003. Remote sensing for crop management. Photogrammetric Engineering & Remote Sensing, 69(6), pp. 647-664.
Raviz, J., Mabalay, M.R., Laborte, A., Nelson, A., Holecz, F., Quilang, E.J., Barbieri, M., Dios, J.D., Collivignarelli, F., Gatti, L., Rala, A., Garcia, C., Mabalot, P., Mirandilla, J.R., Doverte, M., 2015. Mapping rice areas in Mindanao using the first images from Sentinel-1A: The PRISM Project experience. 36th Asian Conference on Remote Sensing, Manila, Philippines, October 19-23, 2015.
Ribbes, F., Le Toan, T., 1999. Rice field mapping and monitoring with RADARSAT data. International Journal of Remote Sensing, 20(4), pp. 745-765.
RIICE (Remote sensing-based Information and Insurance for Crops in Emerging economies), 2012. RIICE Factsheet, Retrieved August 20, 2016, from http://www.riice.org/wp-content/uploads/downloads/2013/12/RIICE- Factsheet1.pdf.
Shao, Y., Fan, X., Liu, H., Xiao, J., Ross, S., Brisco, B., Brown, R., Staples, G., 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing of Environment, 76, pp. 310–325.
Singh, A., 1989. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10 (6), pp. 989-1003.
Singha, M., Wu, B., Zhang, M., 2016. An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sensing, 8(6), 479, doi: 10.3390/rs8060479.
Son, N.T., 2011. Agriculture Monitoring Using Multi-Temporal MODIS Data in the Mekong Delta, Vietnam (Doctoral dissertation, National Central University, Taiwan). Retrieved April 1, 2017 from http://140.113.39.130/cgi-bin/gs32/ncugsweb.cgi/ccd=V4Sgee/record?r1=1&h1=0#XXXX.
Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., 2013. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand. ISPRS Journal of Photogrammetry and Remote Sensing, 86, pp. 77-88.
Son, N.T., Chen, C.F., Chen, C.R., Duc, H.N., Chang, L.Y., 2013. A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sensing, 6, pp. 135–156.
Suga, Y., Konishi, T., 2008. Rice crop monitoring using X, C and L band SAR data. SPIE, 7104, pp. 710410.
Tan, C.P., Koay, J.Y., Lim, K.S., Ewe, H.T., Chuah, H.T., 2007. Classification of multitemporal SAR images for rice crops using combined Entropy Decomposition and Support Vector Machine technique. Progress in Electromagnetics Research, 71, pp. 19–39.
Thai Meteorological Department, 2016. Agrometeorological Report, Retrieved January 20, 2017, from http://www.arcims.tmd.go.th/DailyDATA/Agroreport.html.
Trimble, 2010. eCognition® Developer 8.64.0 Reference Book. Trimble Germany GmbH, Trappentreustr. 1, D-80339 München, Germany.
Turner, M.D., Congalton, R.G., 1998. Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. International Journal of Remote Sensing, 19, pp. 21–41.
Wheeler, T., von Braun, J., 2013. Climate change impacts on global food security. Science, 341(6145), pp. 508–513.
Wilson, P.L., 2011. Pedagogical practices in the teaching of English language in secondary public schools in Parker County (Doctoral dissertation). Retrieved from http://drum.lib.umd.edu/bitstream/1903/11801/1/Wilson_umd_0117E_12354.pdf.
Xiao, X.M., Boles, S., Frolking, S., Li, C.S., Babu, J.Y., Salas, W., Moore, B., 2006.
Mapping paddy rice agriculture in South and Southeast Asia using multitemporal MODIS images. Remote Sensing of Environment, 100, pp. 95–113.
Zhang, Y., Wang, C.Z., Wu, J.P., Qi, J.G., Salas, W.A., 2009. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. International Journal of Remote Sensing, 30, pp. 6301–6315.
指導教授 姜壽浩(Shou-Hao Chiang Ph.D.) 審核日期 2017-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明