博碩士論文 104225020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.144.243.80
姓名 梁琬琪(Wan-Chi Liang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 群集成對資料之一致性的強韌推論
(Robust likelihood inference for agreement between two procedures for clustered matched-pair data)
相關論文
★ 不需常態假設與不受離群值影響的選擇迴歸模型的方法★ 用卜瓦松與負二項分配建構非負連續隨機變數平均數之概似函數
★ 強韌變異數分析★ 用強韌概似函數分析具相關性之二分法資料
★ 利用Bartlett第二等式來估計有序資料的相關性★ 相關性連續與個數資料之強韌概似分析
★ 不偏估計函數之有效性比較★ 一個分析相關性資料的新方法-複合估計方程式
★ (一)加權概似函數之強韌性探討 (二)影響代謝症候群短期發生及消失的相關危險因子探討★ 利用 Bartlett 第二等式來推論模型假設錯誤下的變異數函數
★ (一)零過多的個數資料之變異數函數的強韌推論 (二)影響糖尿病、高血壓短期發生的相關危險因子探討★ 一個分析具相關性的連續與比例資料的簡單且強韌的方法
★ 時間數列模型之統計推論★ 複合概似函數有效性之探討
★ 決定分析相關性資料時統計檢定力與樣本數的普世強韌法★ 檢定DNA鹼基替換模型的新方法 - 考慮不同DNA鹼基間的相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Kappa統計量是一種最常被用來測量評估者間一致性程度,或是不同篩檢方法間之一致性的統計量之ㄧ。最近,Yang and Zhou (2014) 提出了一種在群集成對資料下kappa的無母數變異數估計方法。
本文致力於針對群集成對資料的kappa進行推論,建立kappa參數之強韌概似函數。儘管我們只在群集成對資料為兩個觀察值的情形下討論,此方法仍可適用於多個觀察值的群集資料中。利用此強韌概似函數方法,在不需特別針對群集間的相關性建構模型假設下,我們仍可得到概似比檢定統計量以及基於概似比檢定得到信賴區間等正確的推論工具。
摘要(英)
Kappa statistic is one of the most utilized statistics for measuring agreement between raters or the consistency between screening devices for independent data. Recently, Yang and Zhou (2014) proposed a nonparametric variance estimate for kappa when data are collected in clusters.
This work is devoted to the construction of robust likelihood inference for kappa for matched-pair data. In spite of the fact that we confine to the cases with clusters of size two, the methodology is applicable to general situations. We will derive tools including the likelihood ratio (LR) statistic and the LR test-based confidence interval that remain valid without specifically introducing or modeling the intra-cluster correlation.
關鍵字(中) ★ Kappa統計量
★ 一致性
★ 成對資料
關鍵字(英) ★ Kappa statistic
★ agreement
★ matched-pair data
論文目次

摘要 i
Abstract ii
致謝辭 iii
目錄 iv
表目錄 v
第一章 緒論 1
第二章 文獻回顧 5
2.1 成對資料中 (X_i_1,X_i_2) 與 (Y_i_1,Y_i_2) 間獨立時k之變異數估計量 5
2.2 成對資料中 (X_i_1,X_i_2) 與 (Y_i_1,Y_i_2) 間有相關性時k之變異數估計量 7
第三章 強韌概似函數 9
第四章 多項模型之強韌化 12
4.1 參數的最大概似估計量之一致性成立 14
4.2 修正項A之計算 17
4.3 修正項B之計算 26
第五章 模擬研究 65
5.1 資料生成方式 65
5.2 模擬結果 67
第六章 實例分析 78
第七章 結論 82
參考文獻 83
參考文獻

1. Bishop Y. M. M., Fienberg S. E., and Holland P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge: Massachusetts Institute of Technology Press.
2. Cohen J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37-46.
3. Fleiss J. L., Cohen J., and Everitt B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72(5): 323-327.
4. Landis J. R. and Koch G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1): 159-174.
5. Parpia S., Koval J. J., and Donner A. (2013). Evaluation of confidence intervals for the kappa statistic when the assumption of marginal homogeneity is violated. Computational Statistics, 28(6): 2709-2718.
6. Royall R. and Tsou T. S. (2003). Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. Journal of the Royal Statistical Society, Series B, 65(2): 391-404.
7. Yang Z. and Zhou M. (2014). Kappa statistic for clustered matched-pair data. Statistics in Medicine, 33(15): 2612-2633.
指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2017-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明