博碩士論文 104225025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.219.206.102
姓名 李權峰(Chuan-Fong Lee)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 在混和常態模型下使用貝氏方法估計參數在股票和選擇權資料
(Bayesian parameter estimation using stock and option data under Mixture Normal Models)
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ On Jump Risk of Liquidation in Limit Order Book
★ 結構型商品之創新、評價與分析★ 具有厚尾殘差下 有效地可預測性檢定
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 漸進最佳變點偵測在金融科技網路安全之分析★ Reducing forecasting error under hidden markov model by recurrent neural networks
★ Empirical Evidences for Correlated Defaults★ 金融市場結構轉換次數的偵測
★ 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例★ 在DVEC-GARCH模型下風險值的計算與實證研究
★ 資產不對稱性波動參數的誤差估計與探討★ 公司營運狀況與員工股票選擇權之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文中,我們引用了一個混合常態模型來分析股票市場跟選擇權市場的關係。觀察在加入隱含波動率的訊息之後,混合常態模型的波動率是否有影響,而我們檢驗的方式是建立信賴區間去看他的變化,在模擬跟實證都是使用的是貝氏估計來探討,最後發現加入隱含波動率這個動作,確實減少了混合常態模型整體
波動率的信賴區間長度,估計值也變精準,也說明了選擇權跟股票市場在混合常態模型估計下會互相影響。
摘要(英) In this paper, we use a mixture normal model to analyze the relationship between the stock market and the option market. Observe after adding the implied volatility, whether the volatility of the mixture normal model has an effect and the way we test is to establish a confidence interval to see its changes. In the simulation and empirical study are using the Bayesian estimate to explore. Finally found to join the implied volatility, does reduce the confidence interval length of total volatility and estimates are more accurate, also shows that the option and the stock market under the mixture normal model will affect each other.
關鍵字(中) ★ 混合常態模型
★ 隱含波動率
★ 貝氏估計
★ 信賴區間
★ 選擇權市場
★ 股票市場
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
1 Introduction 1
2 MNModelandImpliedVolatility 3
2.1 MixtureNormalModel.............................3
2.2 ImpliedVolatility................................6
3 Theparametersestimation 7
3.1 Bayesianwithstock..............................7
3.2 Bayesianwithstockandoption........................10
4 Simulations 13
4.1 Step.......................................13
4.2 Simulationresults................................17
5 Empiricalstudy 20
5.1 Datadescription................................20
5.2 Empiricalresult.................................21
6 Conclusion 25
References 26
參考文獻 [1] Alexander,C.,Narayanan,S.,(2001)OptionPricingwithNormalMixtureReturns
ModellingExcessKurtosisandUncertaintyinVolatility. ICMA CentreDiscussion
PapersinFinance.
[2] Ehlers,R.S.,(2003)BayesianInferenceandMCMCmethods:nopain,noWindows.
[3] Efron,B.(2013)EmpiricalBayesmodeling,computation,andaccuracy.
[4] Gen¸cay,R.,Salih,A.,(2003)DegreeofMispricingwiththeBlack-ScholesModel
and NonparametricCures. ANNALS OFECONOMICSANDFINANCE, 4,73-101.
[5] Huang,Y.L.(2015)BayesianReliabilityAnalysisofConstant-StressAccelerated
Degradation BasedonGammaProcesswithRandomEffectandTime-ScaleTrans-
formation.
[6] Ismail,M.T.,Phoong,S.Y.,(2015)AComparisonBetweenBayesianandMaximum
LikelihoodEstimationsinEstimatingFiniteMixtureModelforFinancialData. Sains
Malaysiana, 44(7), 1033–1039.
[7] Joseph,R.R.,(1981)MIXTURESOFNORMALDISTRIBUTIONSANDTHE
IMPLICATIONSFOROPTIONPRICING.
[8] Kon,S.J.,(1984)ModelsofStockReturns:Finance,39,147-165.
[9] Kon,S.,(1984)ModelsofStockReturns-AComparison. The JournalofFinance,
39, 147-165.
[10] Macbeth,J.D.,Merville,L.J.,(1979)AnempiricialexaminationofBlack-Scholes
call optionpricingmodel. The JournalofFinance, 34,1173-1186.
[11] Näsholm,A.,Bunjaku,B.,(2010)ForecastingVolatility-AComparisonStudyof
ModelBasedForecastsandImpliedVolatility.
[12] Neumann,N.,(1997)OptionPricingundertheMixtureofDistributionsHypothesis.
DiskussionspapierNr.208.
[13] Ornthanalai,C.,(2014)Lévyjumprisk:Evidencefromoptionsandreturns. Journal
of FinancialEconomics, 112, 69-90.
[14] Polson,N.,Johannes,M.,(2006)MCMCMethodsforContinuous-TimeFinancial
Econometrics.
[15] Poon,S.H.,(2005)APracticalGuidetoForecastingFinancialMarketVolatility.
[16] Popovi´c,B.V.,Cordeiro,G.,Ortega,E.M.,Pascoa,M.A.R.,(2017)Anewex-
tended mixturenormaldistribution. MATHEMATICALCOMMUNICATIONS, 22,
53–73.
[17] Redner,R.A.,Walker,H.F.,(2009)MixtureDensities,MaximumLikelihoodand
the EmAlgorithm.In SIAM Review, Vol.26,195-239.
[18] Tomczak,J.M.(2012)FisherinformationmatrixforGaussianandcategoricaldis-
tributions.
[19] Xu,D.,Wirjanto,T.S.,(2009)TheApplicationsofMixturesofNormalDistributions
in EmpiricalFinance:ASelectedSurvey.
[20] Zucchini,W.,MacDonald,I.(2009)HiddenMarkovModelsforTimeSeries.
指導教授 傅承德 審核日期 2017-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明