參考文獻 |
[1] Distributed Generation Renewable Energy Estimate of Costs, NREL, (2016). (http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html)
[2] L. L. Kazmerski, “Best Research-Cell Efficiencies,”NERL, March(2016).(https://www.nrel.gov/pv/assets/images/efficiency-chart.png)
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, 131, 6050-6051, (2009).
[4] Yang, Woon Seok, et al. “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science,348.6240, 1234-1237,(2015).
[5] 有機太陽能電池技術發展, 黃建榮
[6] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, “Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module,” in Technical Digest of the 21st International Photovoltaic Science and Engineering Conference, 2C-5O-08, Fukuoka, Japan, (2011).
[7] G. F. L. M.W. Davidson, “Photomicrography in the geological sciences,” Journal of Geological Education, 39,403-422,(1991).
[8] A. Kojima, K. Teshima, T. Miyasaka and Y. Shirai, “Novel photoeletrochemical cell with mesoscopic electrodes sensitized by lead-halide compound (2),” 210th ECS Meeting, Cancun, Mexico, Abstr. No. 397, October(2006).
[9] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,”Science,342, 344-347, (2013).
[10] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3Pb3,” Solid State Communications,127, 619-623, (2003).
[11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,”Journal of the American Chemical Society,131,6050-6051, (2009).
[12] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell, ”Nanoscale,3, 4088-4093,( 2011).
[13] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports,2,( 2012).
[14] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature prOCessed meso-superstructured to thin-film perovskite solar cells,”Energy & Environmental Science, 6, 1739-1743,( 2013).
[15] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Letters,13, 1764-1769, (2013).
[16] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,”Nature, 499, 316-319, (2013).
[17] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,”Science, 345, 542-546, (2014).
[18] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,”Nature Nanotechnology, 9, 927-932, (2014).
[19] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & Environmental science, 9, 1989-1997,( 2016).
[20] H.S. Kim, S.H. Im, N.G. Park, “Organolead Halide Perovskite: New
Horizons in Solar Cell Research,” J. Phys. Chem. C, 118 , 5615-
5625, (2014).
[21] H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: New horizons in solar cell research,” The Journal of Physical Chemistry C, 118, 5615-5625,( 2014).
[22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, 13, 897-903,(2014).
[23] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, 4088-4093, March ( 2011).
[24] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells, ” Nano Energy, 10, 10-18, (2014).
[25] W.-J. Yin, T. Shi, and Y. Yan, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Applied Physics Letters, 104, 063903, (2014).
[26] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Letters,14, 2584-2590, (2014).
[27] Chang, S. H., Lin, K. F., Chiu, K. Y., Tsai, C. L., Cheng, H. M., Yeh, S. C., ... & Wu, C. G. ,“Improving the efficiency of CH 3NH3PbI 3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer, ” Solar Energy, 122, 892-899(2015).
[28] C.-C. Chen, Sheng Hsiung Chang*, L.-C. Chen, C.-L. Tsai, H.-M. Cheng, W.-C. Huang, W.-N. Chen, Y.-C. Lu, Z.-L. Tseng, K. Y. Chiu, S.-H. Chen, and C.-G. Wu, “Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells,” Solar Energy Materials & Solar Cells,159, 583-598, January (2017)
[29] Shao, Yuchuan, et al. “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells.” Nature Communications (2014).
[30] C.-L. Tien, H.-G. Zeng, “Measuring residual stress of anisotropic thin film by fast Fourier transform,” Opt. Express 18, 16594–16600, (2010).
[31] Jo, Jang, et al. "Time‐Dependent Morphology Evolution by Annealing Processes on Polymer: Fullerene Blend Solar Cells." Advanced Functional Materials 19.6, 866-874, (2009). |