博碩士論文 104522084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.221.183.34
姓名 金柏仲(PO-CHUNG CHIN)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用大數據分析提供適性化學習路徑服務
(Applying Big Data Analytics to Provide Adaptive Learning Path Service)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技技術的發展,數位學習越來越普及,開放教育資源(Open Educational Resources)也是其中重要的一環,只要網路觸及的地方,使用者都能根據需求輕易地取得公開分享的教學資源,許多開放教育資源平台也就隨之發展起來。開放教育資源平台提供了豐富的教學資源,然而過多的教學資源反而導致學習者不知該從何處學習、如何學習。因此本研究應用了目前熱門的大數據分析技術開發了適性化學習路徑推薦系統,使用Spark on Yarn的運算框架來建置分析環境,透過分析使用紀錄、學習行為的資料,達到適性化學習路徑的推薦。系統會將使用者自動分群,再利用序列樣式探勘演算法找出適合使用者學習的路徑。
摘要(英) Following the development of technology, we can see the rise in E-Learning’s popularity; Open Educational Resources (OER) is also an important part of it. User can easily get open learning materials according to their requirements, and many OER platforms been built. OER platforms provide a variety of learning materials but also let the learners wonder which to learn and how to learn. As a result, this study develops an adaptive learning path recommendation system by applying Big Data analytics technologies. The proposed system uses Spark on Yarn framework, analyzing user logs and video information to find out suitable learning path list for each user by the combination of Clustering and Sequential Pattern Mining.
關鍵字(中) ★ 大數據分析
★ 適性化數位學習
★ 學習路徑
★ 推薦系統
關鍵字(英) ★ Big Data analytics
★ adaptive E-Learning
★ learning path
★ recommendation system
論文目次 應用大數據分析提供適性化學習路徑服務 I
摘要 I
ABSTRACT II
圖目錄 V
表目錄 VI
一、 緒論 1
二、 文獻探討 4
2.1 學習路徑(Learning Paths) 4
2.2 適性化數位學習(Adaptive E-learning) 4
2.3 分群(Clustering) 5
2.4 序列樣式探勘(Sequential Pattern Mining) 5
三、 研究方法 7
3.1 系統環境 7
3.2 系統架構 12
3.3 資料收集 14
3.3.1 影片資訊 14
3.3.2 使用歷程資料 15
3.3.3 資料前處理 16
3.4 資料儲存 19
3.5 資訊萃取與分析 19
3.5.1 使用者分群 19
3.5.2 尋找頻繁路徑 23
3.6 資訊應用 26
四、 實驗設計 28
4.1 實驗一: 觸及率 28
4.1.1 離線評估(Offline Experiment) 28
4.1.2 Google Rich Media Gallery 29
4.1.3 資料切分 29
4.1.4 模擬階段 30
4.2 實驗二:學習成效 30
4.2.1 參與者 30
4.2.2 教材 30
4.2.3 前後測 31
4.2.4 實驗過程 31
五、 結果與討論 32
六、 結論與未來研究 33
七、 參考文獻 35
參考文獻
Akbulut, Y., & Cardak, C. S. (2012). Adaptive educational hypermedia accommodating learning styles: A content analysis of publications from 2000 to 2011. Computers & Education, 58(2), 835-842.
Butcher, N. (2015). A basic guide to open educational resources (OER). Commonwealth of Learning, Vancouver and UNESCO.
Chen, C. M. (2008). Intelligent web-based learning system with personalized learning path guidance. Computers & Education, 51(2), 787-814.
Chen, C. M. (2009). Ontology‐based concept map for planning a personalised learning path. British Journal of Educational Technology, 40(6), 1028-1058.
Chen, C. M., Lee, H. M., & Chen, Y. H. (2005). Personalized e-learning system using item response theory. Computers & Education, 44(3), 237-255.
Cleary, T. J., & Zimmerman, B. J. (2004). Self‐regulation empowerment program: A school‐based program to enhance self‐regulated and self‐motivated cycles of student learning. Psychology in the Schools, 41(5), 537-550.
Esichaikul, V., Lamnoi, S., & Bechter, C. (2011). Student modelling in adaptive e-learning systems. Knowledge Management & E-Learning An International Journal (KM&EL), 3(3), 342-355.
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology, 14(8), 2611-2620.
Gong, S. (2010). A collaborative filtering recommendation algorithm based on user clustering and item clustering. JSW, 5(7), 745-752.
Hsu, M. H. (2008). A personalized English learning recommender system for ESL students. Expert Systems with Applications, 34(1), 683-688.
Hwang, G. J., Kuo, F. R., Yin, P. Y., & Chuang, K. H. (2010). A heuristic algorithm for planning personalized learning paths for context-aware ubiquitous learning. Computers & Education, 54(2), 404-415.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
Kurilovas, E., Zilinskiene, I., & Dagiene, V. (2015). Recommending suitable learning paths according to learners’ preferences: Experimental research results. Computers in Human Behavior, 51, 945-951.
Li, Y., Niu, Z., Chen, W., & Zhang, W. (2011, December). Combining collaborative filtering and sequential pattern mining for recommendation in e-learning environment. In International Conference on Web-Based Learning (pp. 305-313). Springer Berlin Heidelberg.
Lin, C. F., Yeh, Y. C., Hung, Y. H., & Chang, R. I. (2013). Data mining for providing a personalized learning path in creativity: An application of decision trees. Computers & Education, 68, 199-210.
Liu, P. L., Chen, C. J., & Chang, Y. J. (2010). Effects of a computer-assisted concept mapping learning strategy on EFL college students’ English reading comprehension. Computers & Education, 54(2), 436-445.
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159-179.
Pham, M. C., Cao, Y., Klamma, R., & Jarke, M. (2011). A clustering approach for collaborative filtering recommendation using social network analysis. J. UCS, 17(4), 583-604.
Ray, S., & Turi, R. H. (1999, December). Determination of number of clusters in k-means clustering and application in colour image segmentation. In Proceedings of the 4th international conference on advances in pattern recognition and digital techniques (pp. 137-143).
Sanguinetti, G., Laidler, J., & Lawrence, N. D. (2005, September). Automatic determination of the number of clusters using spectral algorithms. In Machine Learning for Signal Processing, 2005 IEEE Workshop on (pp. 55-60). IEEE.
Shi, L., Al Qudah, D., Qaffas, A., & Cristea, A. I. (2013, June). Topolor: a social personalized adaptive e-learning system. In International Conference on User Modeling, Adaptation, and Personalization (pp. 338-340). Springer, Berlin, Heidelberg.
Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, 1185-1193.
UNESCO., O. (2002). Forum on the impact of open courseware for higher education in developing countries:: final report.
Wu, Y. C. (2004). The effects of repeated reading and text difficulty on fifth grade reading performance. Bulletin of Educational Psychology, 35(4), 319-336.
Zhao, C., & Wan, L. (2006, July). A shortest learning path selection algorithm in e-learning. In Advanced Learning Technologies, 2006. Sixth International Conference on (pp. 94-95). IEEE.
指導教授 楊鎮華 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明