博碩士論文 104522054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.50.71
姓名 蔡宗明(Tzung-Ming Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一個醫療照護監測系統之實作
(Implementation of a Monitoring System for Healthcare Applications)
相關論文
★ 應用嵌入式系統於呼吸肌肉群訓練儀之系統開發★ 勃起障礙與缺血性心臟病的雙向研究: 以台灣全人口基礎的世代研究
★ 基質輔助雷射脫附飛行時間式串聯質譜儀 微生物抗藥性資料視覺化工具★ 使用穿戴式裝置分析心律變異及偵測心律不整之應用程式
★ 建立一個自動化分析系統用來分析任何兩種疾病之間的關聯性透過世代研究設計以及使用承保抽樣歸人檔★ 青光眼病患併發糖尿病,使用Metformin及Sulfonylurea治療得到中風之風險:以台灣人口為基礎的觀察性研究
★ 利用組成識別和序列及空間特性構成之預測系統來針對蛋白質交互作用上的特殊區段點位進行分析及預測辨識★ 新聞語意特徵擷取流程設計與股價變化關聯性分析
★ 藥物與疾病關聯性自動化分析平台設計與實作★ 建立財務報告自動分析系統進行股價預測
★ 建立一個分析疾病與癌症關聯性的自動化系統★ 基於慣性感測器虛擬鍵盤之設計與實作
★ 應用手機開發手握球握力及相關資料之量測★ 利用關聯分析全面性的搜索癌症關聯疾病
★ 全面性尋找類風濕性關節炎之關聯疾病★ 利用機器學習法估算台灣無測站區域之PM2.5濃度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在全球人口的快速成長及人口老化下,護理人力的短缺正衝擊著台灣的醫療環境,造成 護理人員處在一個高工作量與高壓力的環境下,台灣護理人員所要照顧的病人數是美國 及日本的 2-3 倍。傳統的巡房過程,護理人員必須頻繁地查看病人,透過笨重或是彼此 獨立系統的裝置量測並上傳病人的生理資訊,而這繁雜的方式仍然無法避免病人在盲點 區域發生意外。在此論文,我們實作了一個藉由無線感測網路的病人監測系統來整合從 穿戴式感測器和靜態式感測器所監測到的生理訊號。相比其他相關研究,我們藉由覆蓋 在醫療環境中的多個通訊閘道器來結合了生理訊號與室內定位的監測;我們還開發一個 Web 的應用程式提供給醫護人員遠端地察看與獲取病人即時的身體狀況,當有偵測到不 正常的生理資訊,則會發起警報,並將該緊急危難的病人的生理資訊和所在位置傳給醫 護人員,藉由這個監測系統來輔助護理人員用更有效率的方式來監測病人。
摘要(英) With the rapid growth of the global population and population aging, the shortage of nurses is impacting Taiwan′s medical environment to make the nurses be in the high stressful and high workload. In Taiwan, the number of the patients cared by the nurses is the US and Japan 2 to 3 times. Traditionally, health providers need to frequently check patients′ physiological conditions by recording by handwriting, then reporting to the medical centers from a device which is bulky, or which is an individual system. Even though the efforts that they have done to secure patients, there is still the possibility that patients is in emergency in the blinding area. In this Thesis, we implement a patient monitoring system based on wireless sensor network to integrate the monitored patients′ physiological signals from the wearable sensors (PPG) and the stationary sensors (ECG). Compared with other studies, we combine physiological signals and the indoors position locations by multiple communication gateways covering the medical environment. We also developed a Web application for health providers to remotely access the patients′ current physiological status. When it detects the abnormal physiological signals, it will raise an alarm and response the abnormal signals and the locations to health providers. By using our patient monitoring system, health providers can monitor patients in a more efficient way.
關鍵字(中) ★ 醫療照護
★ 監測系統
關鍵字(英) ★ Healthcare
★ Monitoring System
論文目次 摘要.............................................i
ABSTRACT .......................................ii
Table of Contents..............................iii
List of Figures.................................iv
Chapter 1 Introduction ..........................1
1.1 Background...................................1
1.2 Motivation ..................................2
1.3 Research Goal................................3
Chapter 2 Related Works..........................4
Chapter 3 System Design .........................6
3.1 End Node Layer...............................6
3.2 Communication Layer..........................6
3.3 Cloud Service Layer..........................7
Chapter 4 System Implementation .................9
4.1 Wearable Sensor .............................9
4.2 Communication Gateway with an Environmental Sensor..........................................13
4.3 Stationary Sensor...........................16
4.4 Cloud Service Layer Implementation..........19
Chapter 5 Applications..........................21
5.1 Scenario 1: In the Hospital Wards...........21
5.2 Scenario 2: In the Hemodialysis Center .....24 Chapter 6 Discussions and Future Works..........28
References .....................................29
參考文獻 1. J. Foster and Y. Hao, Wireless sensor networks for health monitoring applications. Physiological Measurement, 2008. 29(11): pp. 27-56.
2. C.F. Lin, C.I Huang, C.C. Kao, and M.S. Lu, The Nursing Shortage and Nursing Retention Strategies in Taiwan. The Journal of Nursing, 2013. 60(3): pp. 88-93.
3. S.D.T. Kelly, N.K. Suryadevara, and S.C. Mukhopadhyay, Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. IEEE Sensors Journal, 2013. 13(10): pp. 3846-3853.
4. Y. Gil, W. Wu, and J. Lee, A Synchronous Multi-Body Sensor Platform in a Wireless Body Sensor Network: Design and Implementation. Sensors (Basel, Switzerland), 2012. 12(8): pp. 10381-10394.
5. S.C. Mukhopadhyay, Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 2015. 15(3): pp. 1321-1330.
6. N.K. Suryadevara and S.C. Mukhopadhyay, Wireless Sensor Network Based Home Monitoring System for Wellness Determination of Elderly. IEEE Sensors Journal, 2012. 12(6): pp. 1965-1972.
7. K. Malhi, S.C. Mukhopadhyay, J. Schnepper, M. Haefke and H.Ewald, A Zigbee-Based Wearable Physiological Parameters Monitoring System. IEEE Sensors Journal, 2012. 12(3): pp. 423-430.
8. H. Ghayvat, J. Liu, S.C. Mukhopadhyay, and X. Gui, Wellness Sensor Networks: A Proposal and Implementation for Smart Home for Assisted Living. IEEE Sensors Journal, 2015. 15(12): pp. 7341-7348.
9. M.R. Yuce, Implementation of wireless body area networks for healthcare systems. Sensors and Actuators A: Physical, 2010. 162(1): pp. 116-129.
10. D. Chen, B. Zeng, Z. Sun, L. Zhao, Z. Huang, and M. Wang, An off-bed detection and bathroom accident monitor system for nursing home. in 2016 International Conference on Advanced Robotics and Mechatronics (ICARM). 2016: pp. 53-58.
11. F. L. Carlos, L. Aroa, M. Eduardo, B. Jose-Miguel, and T. Vicente, Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 2015. 15(12): pp. 29769-29840.
12. M.Y. Li, and J.T. Horng, A Mobile Application of Analyzing Heart Rate Variability and Detecting Arrhythmia with Wearable Device in Smart Phones. National Central University, Master thesis, 2015: pp. 6-9.
13. W. Wu, Y. Gil, and J. Lee, Combination of Wearable Multi-Biosensor Platform and Resonance Frequency Training for Stress Management of the Unemployed Population. Sensors, 2012. 12(10): pp. 13225-13245.
14. F. Guede-Fernández, V. Ferrer-Mileo, J. Ramos-Castro, M. Fernández-Chimeno, and M. A. García-González, Real time heart rate variability assessment from Android smartphone camera photoplethysmography: Postural and device influences. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015: pp. 7332-7335.
15. W. Saadeh, M.A.B. Altaf, and M.S.B. Altaf, A high accuracy and low latency patient-specific wearable fall detection system. in 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 2017: pp. 441-444.
16. R. Dias and J.M.d. Silva, A Flexible Wearable Sensor Network for Bio-Signals and Human Activity Monitoring. in 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops. 2014: pp. 17-22.
17. D. Athanasios, G. Damianos, P. Grammati, and K. Charalampos, Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems. Sensors (Basel, Switzerland), 2015. 15(6): pp. 14487-14512.
18. llc., W.F.E., Pulse Sensor. https://pulsesensor.com/.
19. llc., W.F.E., PulseSensor Arduino code for BPM and Processing-Visualizer. https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino.
20. AngioScan, AngioScan-01P. https://www.angioscan.ru/en/angioscan-01p/brief.
21. S.M. Amiri, M.T. Pourazad, P. Nasiopoulos, and V.C.M. Leung, Non-intrusive human activity monitoring in a smart home environment. in 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013). 2013: pp.606-610.
22. F. Guo, R. Zhao, L. Liu, Z. Zhang, and D. Yang, System design for human vital signals monitor based on wireless sensor network. in Proceedings of 2012 International Conference on Measurement, Information and Control. 2012 1: pp. 360-364.
23. E. Kańtoch, Telemedical human activity monitoring system based on wearable sensors network. in Computing in Cardiology 2014. 2014: pp. 469-472.
24. W.L. Chang, and S. Šabanović, Exploring Taiwanese nursing homes as product ecologies for assistive robots. in 2014 IEEE International Workshop on Advanced Robotics and its Social Impacts. 2014: pp. 32-37.
指導教授 洪炯宗(Jorng-Tzong Horng) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明