以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:31 、訪客IP:18.218.190.118
姓名 廖育萱(Yu-Syuan Liao) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 融合多特徵與個人化模組之畫作推薦系統
(Art work recommendation system with fusion of multiple features and personalized modules)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 科技日新月異的發展,影像處理 (Image Processing)被廣泛的應用在各個領 被廣泛的應用在各個領 域中 ,車輛偵測、圖形識別人臉辨等。近日來利用空閒時欣賞畫作的們 亦日漸趨多,但目前較少能直接使用圖片影像為輸入進行畫作相似風格檢索我們提供一個應用程式,藉由擷取畫作的特徵再透過相關性排序(Rank)後,即可推播出資料庫中與詢問的畫作相似風格給予使用者。 後,即可推播出資料庫中與詢問的畫作相似風格給予使用者。
本論文使用紋理 (Texture)、顏色 (Color histogram)、Canny邊緣偵測 (Canny edge detection)、Sobel邊緣偵測的梯度強分佈特性 (Sobel gradient distribution magnitude)等方式作為 畫作的特徵 。由於每個人對畫作的風格為主觀意識,因 此自行設計出一個評價應用程式 (Feedback application),經由此應用程式 可獲得 回饋資料作為個人化模組 (Personalized module)的訓練資料,經由畫作特徵 的摘要(英) The number of people visiting the art exhibition at their free time has been increased in recent years. People might be interested of a certain artwork and would like to know if there are any other artworks with similar styles. However, artwork recommendation systems that can retrieve images with similar styles are rare in the existing research works. We propose an application that can utilize the features extracted from the art works and rank the artworks by the features of the relevance and then return artworks with similar styles in our database with the query image of art work to the users.
The proposed system utilizes gradient distribution, colors, texture, and face information as the features of the art works. Everyone has a personal opinion about the artworks, so we also propose a feedback mechanism. We can obtain the feedback data and the feedback data as the training data of personalized modules and train the weights of the features. Afterwards, the system can recommend artworks according to personalized preferred similar styles.關鍵字(中) ★ 畫作風格推薦
★ Sobel邊緣偵測
★ Canny edge邊緣偵測
★ 二維離散小波轉換
★ 人臉偵測關鍵字(英) 論文目次 摘要 ................................ ................................ ................................ .............................. IV
Abstract ................................ ................................ ................................ ......................... V
致謝 ................................ ................................ ................................ .............................. VI
目錄 ................................ ................................ ................................ ............................ VII
圖目錄 ................................ ................................ ................................ .......................... IX
表目錄 ................................ ................................ ................................ .......................... XI
第一章 緒論 ................................ ................................ ................................ .................. 1
1.1研究動機 ................................ ................................ ................................ .......... 1
1.2相關文獻 ................................ ................................ ................................ .......... 2
1.3系統使用流程 ................................ ................................ ................................ .. 3
1.4論文架構 ................................ ................................ ................................ .......... 6
第二章 特徵方法回顧 ................................ ................................ ................................ .. 7
2.1 Sobel Operator ................................ ................................ ................................ . 7
2.2 Canny Edge Detection ................................ ................................ ..................... 9
2.2.1 Canny邊緣偵測準則 邊緣偵測準則 ................................ ................................ ........... 9
2.2.2 Canny邊緣偵測演算法 邊緣偵測演算法 ................................ ................................ ..... 11
2.3 離散小波轉換 ................................ ................................ ............................... 12
2.4 人臉偵測 ................................ ................................ ................................ ....... 15
2.4.1 AdaBoost ................................ ................................ ............................. 15
2.4.2哈爾特徵 ................................ ................................ ............................. 17
2.4.3級聯架構的分類器 ................................ ................................ ............. 19
2.5 膚色偵測 ................................ ................................ ................................ ....... 19
第三章 畫作特徵選取和系 統說明 ................................ ................................ ............ 21
VIII
3.1畫作的特徵 ................................ ................................ ................................ .... 21
3.1.1人臉特徵 ................................ ................................ ............................. 21
3.1.2膚色特徵 ................................ ................................ ............................. 23
3.1.3畫作色彩分布特徵 ................................ ................................ ............. 24
3.1.4 Sobel邊緣偵測的梯度強分佈特性 ................................ .............. 26
3.1.5 Canny邊緣特徵 ................................ ................................ ................. 31
3.1.6紋理的二維離散小波轉換特徵 ................................ ......................... 32
3.2畫作排序和比較特徵相似性方法 ................................ ................................ 34
3.2.1畫作排序 ................................ ................................ ............................. 34
3.2.2比較特徵相似性方法 ................................ ................................ ......... 36
3.3使用者的回饋資料 ................................ ................................ ........................ 36
3.4個人化模組 ................................ ................................ ................................ .... 37
3.5系統介面功能說明 ................................ ................................ ........................ 39
第四章 實驗結果與分析 ................................ ................................ ............................ 42
4.1畫作資料庫收集 ................................ ................................ ............................ 42
4.2實驗結果與分析 ................................ ................................ ............................ 42
第五章 結論與未來研究方向 ................................ ................................ .................... 47
參考文獻 ................................ ................................ ................................ ...................... 48參考文獻 [1] Alasdair McAndrew著, 數位影像處理 , 劉震昌審譯 , 高立圖書有限公司 , 台 北, 2013, 初版二刷
[2] Eva Cetinic, Sonja Grgic , “Automated Painter Recognition Based on Image,” in 55th International Symposium ELMAR-2013, Zadar, Croatia, Sept.25-27, 2013, pp.19-22.
[3] Meijun Sun, Dong Zhang, Jinchang Ren, Zheng Wang, Jesse S.Jin, “ Brushstroke based sparse hybrid convolutional neural networks for author classification of Chinese ink-wash paintings,” in 2015 IEEE International Conference on Image Processing (ICIP), QC, Canada, Sept.27-30, 2015, pp.626-630.
[4] Jia Li, Lei Yao, Ella Hendriks, James Z. Wang, “Rhythmic Brushstrokes Distinguish van Gogh from His Contemporaries: Findings via Automated Brushstroke Extraction,” IEEE. Trans. Pattern Analysis and Machine Intelligence, vol.34, no.6, pp.1159 – 1176, June 2012.
[5] I. Widjaja, W. K. Leow, Fang-Cheng Wu, “Identifying painters from color profiles of skin patches in painting images,” in 2003 IEEE International Conference on Image Processing (ICIP), Barcelona, Spain, Sept.14-17, 2003, pp.845-848.
[6] Nadia Baaziz, Omar Abahmane, Rokia Missaoui, “Texture feature extraction in the spatial-frequency domain for content-based image retrieval,” Arxiv preprint arXiv:1012.5208, 2010.
[7] Irwin Sobel, Gary Feldman, “Isotropic 3x3 Image Gradient Operator,” 1968
[8] J. F. Canny, “A computational approach to edge detection,” IEEE. Trans. Pattern Anal. Machine Intelligence, vol.8, no.6, pp.679–698, Nov 1986.
[9] S. 0. Rice, "Mathematical analysis of random Noise," Bell Syst. Tech. J., vol.24, pp.46-156, 1945.
[10] P. Goupillaud, A. Grossmann, J. Morlet, “Cycle-octave and Related Transforms in Seismic Signal Analysis,” Geoexploration, vol.23, 85-102, 1984-1985.
[11] M. Antonono, M. Barlaud, P. Mathieu, I. Daubechies, “Image Coding Using Wavelet Transform,” IEEE. Trans. Image Processing, vol.1, no.2, pp.205-220, Apr 1992.
[12] P. Viola, M.J. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the Conference on Computer Vision and
Pattern Recognition(CVPR), Los Alamitos, CA, USA, 2001, pp.511-518.
[13] Yoav Freund, Robert E Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” J. of Computer and System Sciences, vol.55, pp.119-139, 1997.
[14] Karin Sobottka, Ioannis Pitas, “A Novel Method for Automatic Face Segmentation, Facial Feature Extraction and Tracking,” Signal Processing: Image Communication, vol. 12, no.3, pp.263-281, 1998.
[15] R. Nock, F. Nielsen, “Statistical region merging,” IEEE. Trans. Pattern Analysis and Machine Intelligence, vol.26, no.11, pp.1452-1458, Nov 2004.
[16] R. Nock, “Fast and reliable color region merging inspired by decision tree pruning,” in Proceedings of the Conference on Computer Vision and Pattern Recognition(CVPR) 2001, Kauai, HI, USA, Dec.8-14, 2001, pp.271-276.
[17] R. Nock, F. Nielsen, “Semi-supervised statistical region refinement for color image segmentation,” Pattern Recognition, vol.38, no.6, pp.835-846, June 2005.
[18] 董俊良 , 王偉華 , 廖琇怡 , 王贊鑌 , ”頻率域影像轉換之分析與比較 ,” 勤益學 報第二十卷期 , pp.483-494, 民國九十一年
[19] 曾婉菁 , “人臉偵測及辨識方法探究 ,” 印刷科技第三十卷二期 , pp.21-40
[20] Wei-Ta Chu, Ying-Chieh Chao, "Line-Based Drawing Style Description for Manga Classification," Proceedings of ACM International Conference on Multimedia, pp.781-784, 2014.
[21] Marta Barrilero, Silvia Uribe, Maria Alduan, Faustino Sánchez, Federico Alvarez, ” In-network content based image recommendation system for Content-aware Networks,” in Computer Communications Workshops (INFOCOM WKSHPS) 2011, Shanghai, China, April.10-15, 2011, pp.115-120
[22] Lior Shamir, Jane A. Tarakhovsky, ” Computer analysis of art,” ACM Journal on Computing and Cultural Heritage, vol.5, no.2, Article 7, July 2012.
[23] Yaniv Bar, Noga Levy, Lior Wolf, ” Classification of Artistic Styles using Binarized Features Derived from a Deep Neural Network,” ECCV Workshops, vol.1, pp.71-84, 2014.
[24] Jana Zujovic, Lisa Gandy, Scott Friedman, Bryan Pardo, Thrasyvoulos N. Pappas, “Classifying Paintings by Artistic Genre: An Analysis of Features & Classifiers,” in Multimedia Signal Processing 2009, Rio De Janeiro, Brazil, Oct.5-7, 2009.指導教授 鄭旭詠 審核日期 2017-7-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare