摘要(英) |
In recent years, the rise of e-commerce, the international demand for freight traffic increases, although the whole, the export trade volume is shrinking, the international trade volume of goods is increasing year by year. In this era of rapid demand, the quantity of goods delivered by air is relatively large, and how quickly the air cargo will be transported quickly and correctly, and the capacity of each warehousing industry is tested. Since past operating habits are based on human experience, the goods are not be able to enter the automated storage equipment and be placed in the appropriate location. Moreover, because of the flow of personnel and operating experience can not be fully inherited, export operations require a lot of manpower and time to find goods. The purpose of this study includes the use of data exploration and supervised machine learning technology to excavate the short time of the export of goods inventory forecast model, the establishment of air cargo export time warehouse model. In particular, single and multiple classification techniques are compared in order to find the optimal model and provide relevant companies with a reference to the industry concerned in forecasting the time of export of goods by air.
In this study, different classification techniques were constructed by the Weka data mining software. Particularly, the decision tree (J48), support vector machine, neural network, and nearest neighbor were used for the single classification techniques. On the other hand, the bagging and AdaBoost methods are employed to construct the multiple classifiers for comparisons.
Experimental results show that in the case of 2015 training data set, the best single classifier is the nearest neighbor algorithm whereas the multiple classifiers are the nearest neighbor algorithm by bagging and decision tree by AdaBoost. More specifically, the receiver operating characteristic curves (ROC) of these classifiers generally reach 0.74, 0.8 or so, with a good reference. Therefore, this study suggests that for the future of the case company in the air cargo export time forecast, they can give the priority to employ a single classification technology based on the nearest neighbor algorithm and multiple nearest neighbor classifiers by bagging the and multiple J48 classifies by AdaBoost to carry out air cargo export time forecasting analysis. |
參考文獻 |
【英文文獻】
1. Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc...
2. Chan, F. T., & Chan, H. K. (2011). Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Systems with Applications, 38(3), 2686-2700.
3. Chan, K., Goldmark, J. P., & Roth, M. B. (2010). Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature. Molecular biology of the cell, 21(13), 2161-2171.
4. Chang, C. C., & Lin, C. J. (2001). LIBSVM: a library for support vector machines. Software available athttp. WWW. CSIE. NTU. EDU. TW/∼ CJLIN/ PAPERS/ LIBSVM.
5. Eldemir, F. A. H. R. E. T. T. I. N., Graves, R. J., & Malmborg*, C. J. (2004). New cycle time and space estimation models for automated storage and retrieval system conceptualization. International Journal of Production Research, 42(22), 4767-4783.
6. Fayyad, U. M. (1996). Data mining and knowledge discovery: Making sense out of data. IEEE Expert: Intelligent Systems and Their Applications, 11(5), 20-25.
7. Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57.
8. Grupe, F. H., & Mehdi Owrang, M. (1995). Data base mining discovering new knowledge and competitive advantage. Information System Management, 12(4), 26-31.
9. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
10. Hanson, R. K. (1997). The development of a brief actuarial risk scale for sexual offense recidivism (No. 1997). Solicitor General Canada.
11. Hanson, R. K., & Thornton, D. (1999). Static 99: Improving actuarial risk assessments for sex offenders (Vol. 2). Ottawa, Ontario, Canada: Solicitor General Canada.
12. Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal storage assignment in automatic warehousing systems. Management science, 22(6), 629-638.
13. Huang, B., Mengersen, A., & Lee, V. D. (1988). Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. The Journal of Cell Biology, 107(1), 133-140.
14. Hwang, H., BAEK, W. J., & Lee, M. K. (1988). Clustering algorithms for order picking in an automated storage and retrieval system. The International Journal Of Production Research, 26(2), 189-201.
15. Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
16. Liu, C. M. (1999). Clustering techniques for stock location and order-picking in a distribution center. Computers & Operations Research, 26(10-11), 989-1002.
17. Liu, C. M. (2004). Optimal storage layout and order picking for warehousing. International Journal of Operations Research, 1(1), 37-46.
18. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
19. Quinlan, J. R. (1993). C4. 5: Programs for Empirical Learning Morgan Kaufmann. San Francisco, CA.
20. Quinsey, V. L., Harris, G. T., Rice, M. E., & Cormier, C. A. (1998). Violent offenders: Appraising and managing risk. American Psychological Association.
21. Rosenwein, M. B. (1994). An application of cluster analysis to the problem of locating items within a warehouse. IIE transactions, 26(1), 101-103.
22. Vapnik, V. (1995). The nature of statistical learning theory Springer New York Google Scholar.
23. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Zhou, Z. H. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37.
【中文文獻】
1. 江曉柔(2013),「物流中心儲位規劃之研究-以某服飾物流中心為例」, 國立雲林科技大學工業工程與管理研究所,碩士論文。
2. 凌士雄(2004),「非對稱性分類分析解決策略之效能比較」,國立中山大學資訊管理學系,碩士論文。
3. 孫海皎、董福慶(1995),「物流中心儲位管理」,經濟部商業自動化系列叢書。
4. 張有恆(2003),「航空業經營與管理」,華泰書局。
5. 張瑜珊(2002),「EIQ分析法在揀貨策略與儲位指派之應用」,國立高雄第一科技大學運輸倉儲營運研究所,碩士論文。
6. 陳立穎(2001),「物流中心之人工揀貨區整體規劃與評估」,元智大學工業工程研究所,碩士論文。
7. 蕭舜益(2005),「運用關聯法則探勘於初等教育資料分析 – 以體適能為例」,朝陽科技大學資訊管理系碩士論文。
8. 賴伊娟(2010),「EIQ與資料探勘應用於儲位規劃之探討」,銘傳大學企業管理研究所,碩士論文。
9. 謝政廷(2007),「應用EIQ分析探討物流中心揀貨作業績效之影響因素」,明新科技大學 工程管理研究所,碩士論文。
10. 譚仕偉(2011),「品項關聯於定位儲位指派應用情形之探討」,銘傳大學企業管理研究所,碩士論文。
11. 蘇昭安(2003),「應用倒傳遞類神經網路在颱風波浪預報之研究」,國立臺灣大學工程科學與海洋工程學系,碩士論文。
【網站資料】
1. Weka开发[6]-LibSVM(accessed 2017/5/16, available at: http://zwustudy.iteye.com/blog/1847574)
2. 遠雄自貿港網站(accessed 2017/5/16, available at: http://www.farglory-holding.com.tw/dindex.jsp) |