博碩士論文 104522104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.136.236.178
姓名 侯家豪(Hou, Chia-Hao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於生物特徵的異常行為識別系統在真實車輛的可應用性研究
(The Applicability of Biometric-Based Driver Abnormal Behavior Detection System in Real Vehicle)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 融合生成對抗網路及領域知識的分層式影像擴增
★ 針織布異常偵測方法研究★ 基於工廠生產資料的異常機器維修預測
★ 萃取駕駛人在不同環境之駕駛行為方法★ 基於刮痕瑕疵資料擴增的分割拼接影像生成
★ 應用卷積神經網路於航攝影像做基於坵塊的水稻判釋之研究★ 採迴歸樹進行規則探勘以有效同時降低多種紡織瑕疵
★ 應用增量式學習於多種農作物判釋之研究★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統
★ 農業影像二元分類:坵塊分離的檢測★ 應用遷移學習於胚布瑕疵檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 交通事故已為10大死因的其中之一,而異常駕駛行為相當容易引起交通事故,為了識別異常行為,需要建構駕駛行為模型,過去有許多關於建構駕駛行為模型的研究,但是許多需要額外的儀器,實用上造成額外的經濟負擔或不便。隨著穿戴式裝置的普及與目前新款汽車逐漸可以對應可攜裝置界面,同時市面上的穿戴式裝置搭載的感測器如加速度計、陀螺儀與磁力計,令使用穿戴式裝置建構駕駛者行為模型有新的可能性。在本研究中,針對實驗室過去基於模擬環境駕駛資料提出的方法,為了得知該系統方法可否移植到真實車輛駕駛中,系統性的分析其方法在真實駕駛環境與模擬駕駛環境的差異是否會對識別效能造成顯著影響,並證實持續性小震動對智慧手錶之駕駛者行為模型建構方法會造成顯著負面影響,需要用中值濾波器濾除;不會因突發性大震動對識別效能造成顯著影響,同時我們提出了一套藉由車內環境感測器濾除所有震動的演算法,但經實驗證實此方法無效,經研究分析發現在讓兩個感測器讀數投影到同一座標系這件事會導致辨識率下將,才導致濾除演算法無效。
摘要(英) Abnormal driving behaviors can easily cause traffic accidents. To identify abnormal driving behaviors of a people, driving behavior modeling is crucial. Smartwatch becomes more and more common and we can use it to analyze driving behavior. In this research, we analysis whether the difference between the real road driving and the driving simulator will have a significant effect on the method our laboratory proposed that modeling the distribution of the hand-movement feature of the driver obtained from the smartwatch by Gaussian mixture models (GMMs).We prove that our method would have significant negative impact to continuously vibration and we need to use median filter to do data pre-processing. Also, we prove that method won’t have significant impact to suddenly huge vibration. Although in this work, we proposed a filter to filtering all vibration by another car environment sensor reading, but it isn’t work when experiment. We found that align driver behavior sensor and car environment sensor let the accuracy become worse.
關鍵字(中) ★ 異常行為偵測
★ 高斯混合模型
★ 支持向量機
★ 穿戴式裝置
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
一、 緒論 1
1-1 研究背景 1
1-2研究動機 2
1-3研究目的 2
1-4論文架構 2
二、相關研究 3
2-1 駕駛者行為模型相關研究 3
2-2 支持向量機 3
2-3 生物特徵驗證效能評估指標 5
2-4 引導影像濾波器 5
三、Android 感測器 7
3-1感測器 8
3-2投影感測器讀數至世界座標系 8
四、系統架構 9
4.1 資料特徵擷取 10
4.2 特徵轉換 10
4.3 駕駛者模型建構 13
4.4 異常行為偵測 14
五、研究方法與設計 15
5-1 真實環境中可能會影響辨識率的變因 16
5-2 持續性小震動 18
5-3 突發性劇烈震動 19
5-4 即時雜訊濾除方法 21
六、實驗環境 23
6-1模擬駕駛環境 23
6-2 真實駕駛環境 24
6-3 轉彎切割 28
七、實驗與討論 32
7-1實驗一:真實環境與模擬環境識別效能之比較 32
7-1-1 結果分析 34
7-2 實驗二:持續性小震動對辨識率影響 34
7-2-1結果分析 37
7-3 實驗三:突發性大震動對辨識率影響 37
7-3-1結果分析 40
7-4 實驗四:新提出之濾波演算法對辨識率影響 41
7-4-1結果分析 43
八、結論 49
參考文獻 50
參考文獻 [1] WORLD HEALTH ORGANIZATION, “The top 10 causes of death,” World Health Organization, 2011. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs310/en/index1.html.
[2] C.Saiprasert andW.Pattara-Atikom, “Smartphone Enabled Dangerous Driving Report System,” in 2013 46th Hawaii International Conference on System Sciences, 2013, pp. 1231–1237.
[3] K.Igarashi, C.Miyajima, K.Itou, K.Takeda, F.Itakura, andH.Abut, “Biometric identification using driving behavioral signals,” in 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763), 2004, vol. 1, pp. 65–68.
[4] C.Miyajima et al., “Driver Modeling Based on Driving Behavior and Its Evaluation in Driver Identification,” Proc. IEEE, vol. 95, no. 2, pp. 427–437, Feb.2007.
[5] A.Wahab, Chai Quek, Chin Keong Tan, andK.Takeda, “Driving Profile Modeling and Recognition Based on Soft Computing Approach,” IEEE Trans. Neural Networks, vol. 20, no. 4, pp. 563–582, Apr.2009.
[6] H.Qian, Y.Ou, X.Wu, X.Meng, andY.Xu, “Support Vector Machine for Behavior-Based Driver Identification System,” J. Robot., vol. 2010, pp. 1–11, 2010.
[7] A.Riener andA.Ferscha, “Supporting Implicit Human-to-Vehicle Interaction : Driver Identification from Sitting Postures,” in Proceedings of the First Annual International Symposium on Vehicular Computing Systems. July 22-24, 2008, Dublin, 2008, pp. 1–10.
[8] R.Chen, M. F.She, X.Sun, L.Kong, andY.Wu, “Driver recognition based on dynamic handgrip pattern on steeling wheel,” Proc. - 2011 12th ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel Distrib. Comput. SNPD 2011, pp. 107–112, 2011.
[9] “In-vehicle Wearable Integration to Accelerate Convergence; Global Penetration in New Cars to Exceed 90% by 2019,” ABI Research, 2014. .
[10] Bhawna Kohli, “Smartwatch Market by Type Product (Extension, Classic & Standalone smartwatch) and Application (PA, Wellness, Medical/ Health, Sports) - Global Opportunity Analysis and Industry Forecast, 2013 - 2020,” 2015.
[11] C.Yang, D.Liang, andC.Chang, “A novel driver identification method using wearables,” in 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC), 2016, pp. 1–5.
[12] H.Eren, S.Makinist, E.Akin, andA.Yilmaz, “Estimating driving behavior by a smartphone,” in 2012 IEEE Intelligent Vehicles Symposium, 2012, no. 254, pp. 234–239.
[13] Z.Chen, J.Yu, Y.Zhu, Y.Chen, andM.Li, “D3: Abnormal driving behaviors detection and identification using smartphone sensors,” in 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2015, pp. 524–532.
[14] B.-L.Lee, B.-G.Lee, andW.-Y.Chung, “Standalone Wearable Driver Drowsiness Detection System in a Smartwatch,” IEEE Sens. J., vol. 16, no. 13, pp. 5444–5451, Jul.2016.
[15] F.Lin, D.Liang, andE.Chen, “Financial ratio selection for business crisis prediction,” Expert Syst. Appl., vol. 38, no. 12, pp. 15094–15102, 2011.
[16] K.He, J.Sun, andX.Tang, “Guided Image Filtering BT - link.springer.com,” Link.Springer.Com, vol. 6311, no. Chapter 1, pp. 1–14, 2010.
[17] L.Wang, H.Ning, T.Tan, andW.Hu, “Fusion of Static and Dynamic Body Biometrics for Gait Recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 2, pp. 149–158, Feb.2004.
[18] D. A.Reynolds, T. F.Quatieri, andR. B.Dunn, “Speaker Verification Using Adapted Gaussian Mixture Models,” Digit. Signal Process., vol. 10, pp. 19–41, 2000.
[19] A. J. L. H. and R. V.S. O. H. Madgwick, “Estimation of imu and marg orientation using a gradient descent algorithm,” in 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), 2011.
指導教授 梁德容 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明