參考文獻 |
[1] 愛立信:行動趨勢報告。2016年6月,取自https://www.ericsson.com/res/site_TW/docs/Ericsson%20Mobility%20Report%20June%202016-%E6%84%9B%E7%AB%8B%E4%BF%A1%E8%A1%8C%E5%8B%95%E8%B6%A8%E5%8B%A2%E5%A0%B1%E5%91%8A%E6%9A%A8%E6%9D%B1%E5%8C%97%E4%BA%9E%E5%8D%80%E9%99%84%E9%8C%84.pdf。
[2] E. Chin :“Gartner says worldwide mobile phone sales declined 1.7 percent in 2012”。2013年2月13日,取自http://www.gartner.com/newsroom/id/2335616。
[3] NetMarketShare:行動作業系統市佔率。2017年,取自https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1&qpsp=194&qpnp=25&qptimeframe=M。
[4] 趨勢科技全球技術支援與研發中心, T. L. : ”「 行動惡意程式數量將成長至 2,000 萬」, PC花了 21 年才累計達到這個數字.” 。2015年,取自http://blog.trendmicro.com.tw/?p=15589。
[5] G DATA : ”G DATA MOBILE MALWARE REPORT.”。2016年,取自https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf。
[6] 趨勢科技全球技術支援與研發中心, T. L. : ”2015 上半年行動威脅情勢.”。2015年,取自http://blog.trendmicro.com.tw/?p=14069。
[7] IThome 蘇文彬: 國內10月將開始試辦app安全檢測認證機制。2015年,取自: http://www.ithome.com.tw/news/98117。
[8] DCCI互聯網數據中心 and 360手機安全中心 : 中國Android手機用戶隱私安全認知調查報告。2015年,取自http://www.dcci.com.cn/media/download/412746f501681a20b1eca7aeac546d87303a.pdf。
[9] James Price : IDC Tech Spotlight: From Silicon To Cloud。2009年,取自https://www.slideshare.net/jamesprice3/idc-tech-spotlight-from-silicon-to-cloud
[10] Milaparkour contagion mobile malware blog : Android Xbot ransomware,2016年5月14日,取自http://contagiominidump.blogspot.tw/2016/05/android-Xbot-ransomware.html。
[11] Cong Zheng, Claud Xiao , Zhi Xu : New Android Trojan “Xbot” Phishes Credit Cards and Bank Accounts, Encrypts Devices for Ransom 。 2016年2月18日,取自https://researchcenter.paloaltonetworks.com/2016/02/new-android-trojan-Xbot-phishes-credit-cards-and-bank-accounts-encrypts-devices-for-ransom/
[12] 趨勢科技全球技術支援與研發中心: 認識惡意威脅:病毒(Virus),木馬(Trojan Horse)等11 個網路威脅定義及安全小秘訣。2013年7月,取自: https://blog.trendmicro.com.tw/?tag=%E6%AE%AD%E5%B1%8D%E9%9B%BB%E8%85%A6%E5%92%8C%E6%AE%AD%E5%B1%8D%E7%B6%B2%E8%B7%AF%EF%BC%88bot%E5%92%8Cbotnet%EF%BC%89
[13] 陳曉莉:IThome 新Android木馬程式現身。2010年12月,取自: http://www.ithome.com.tw/node/65279
[14] Laura O′Brien:Symantec. The Future of Mobile Malware.。2014年2月23日,取自: http://www.symantec.com/connect/blogs/future-mobile-malware
[15] IThome 蘇文彬: 業者說明外交部信箱帳密外洩:備份伺服器被駭。2010年,取自: http://www.ithome.com.tw/node/63035
[16] TWCERT/CC: 日本JTB旅行社遭駭,793萬筆個資外洩。2016年,取自: http://www.ithome.com.tw/node/71785
[17] Milaparkour contagion mobile malware blog。取自http://contagiominidump.blogspot.tw/
[18] IThome 陳曉莉: Check Point:CopyCat感染1400萬台Android裝置,駭客兩個月內賺進150萬美元。2017年7月,取自: http://www.ithome.com.tw/news/115431
[19] Adaptive Mobile. Worm.Gazon: Want Gift Card? Get Malware。2015年,取自https://www.adaptivemobile.com/blog/worm-gazon-want-gift-card-get-malware
[20] Trend Micro, Jordan Pan : Fake Bank App Ramps Up Defensive Measures。2016年,取自: http://blog.trendmicro.com/trendlabs-security-intelligence/fake-bank-app-phishes-credentials-locks-users-out/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Anti-MalwareBlog+%28Trendlabs+Security+Intelligence+Blog%29
[21] 張育妮, & 林盈達. (2012). 以共同行為為基礎之三階式 Android 惡意程式偵測與分類.國立交通大學資訊科學與工程研究所碩士論文.
[22] 劉恩榜. (2011). Android 上的殭屍網路攻擊偵測. 國立交通大學 資訊科學與工程研究所碩士論文.
[23] 黄洁, 谭博, & 谭成翔. (2015). 用户友好的 Android 隐私监管机制. Journal of Computer Application计算机应用, 35(3) , 751-755.
[24] Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., & Enck, W. (2015, May). Appcontext: Differentiating malicious and benign mobile app behaviors using context. In Software engineering (ICSE), 2015 IEEE/ACM 37th IEEE international conference on (Vol. 1, pp. 303-313).
[25] Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014, November). Apposcopy: Semantics-based detection of android malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp. 576-587).
[26] Wei, F., Roy, S., & Ou, X. (2014, November). Amandroid: A precise and general inter-component data flow analysis framework for security vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (pp. 1329-1341).
[27] Baumgärtner, L., Graubner, P., Schmidt, N., & Freisleben, B. (2015, June). AndroLyze: A Distributed Framework for Efficient Android App Analysis. In Mobile Services (MS), 2015 IEEE International Conference on (pp. 73-80).
[28] Rasthofer, S., Arzt, S., Kolhagen, M., Pfretzschner, B., Huber, S., Bodden, E., & Richter, P. (2015, July). Droidsearch: A tool for scaling android app triage to real-world app stores. In Science and Information Conference (SAI), 2015 (pp. 247-256). IEEE.
[29] Enck, William, et al. ”TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones.” ACM Transactions on Computer Systems (2014).
[30] Jing, Y., Ahn, G. J., Zhao, Z., & Hu, H. (2014, March). Riskmon: Continuous and automated risk assessment of mobile applications. In Proceedings of the 4th ACM Conference on Data and Application Security and Privacy (pp. 99-110).
[31] Kim, K. H., & Choi, M. J. (2015, August). Android malware detection using multivariate time-series technique. In Network Operations and Management Symposium (APNOMS), 2015 17th Asia-Pacific (pp. 198-202).
[32] Qiu, L., Zhang, Z., Shen, Z., & Sun, G. (2015, June). AppTrace: Dynamic trace on Android devices. In Communications (ICC), 2015 IEEE International Conference on (pp. 7145-7150).
[33] Zhang, N., Yuan, K., Naveed, M., Zhou, X., & Wang, X. (2015, May). Leave me alone: App-level protection against runtime information gathering on android. In Security and Privacy (SP), 2015 IEEE Symposium on (pp. 915-930).
[34] Qi, H., & Gani, A. (2012, May). Research on mobile cloud computing: Review, trend and perspectives. In Digital Information and Communication Technology and it′s Applications (DICTAP), 2012 Second International Conference on (pp. 195-202).
[35] Damopoulos, D., Kambourakis, G., & Portokalidis, G. (2014, April). The best of both worlds: a framework for the synergistic operation of host and cloud anomaly-based IDS for smartphones. In Proceedings of the Seventh European Workshop on System Security (p. 6). ACM.
[36] Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text mining approach to analyzing and classifying code structures in android malware families. Expert Systems with Applications, 41(4), 1104-1117.
[37] Zhang, M., Duan, Y., Yin, H., & Zhao, Z. (2014, November). Semantics-aware android malware classification using weighted contextual api dependency graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (pp. 1105-1116).
[38] Sun, M., Li, X., Lui, J. C., Ma, R. T., & Liang, Z. (2017). Monet: a user-oriented behavior-based malware variants detection system for android. IEEE Transactions on Information Forensics and Security, 12(5), 1103-1112.
[39] Mohaisen, A., West, A. G., Mankin, A., & Alrawi, O. (2014, October). Chatter: Classifying malware families using system event ordering. In Communications and Network Security (CNS), 2014 IEEE Conference on (pp. 283-291).
[40] Jang, J. W., Yun, J., Mohaisen, A., Woo, J., & Kim, H. K. (2016). Detecting and classifying method based on similarity matching of Android malware behavior with profile. SpringerPlus, Springer, Berlin.
[41] Fereidooni, H., Moonsamy, V., Conti, M., & Batina, L. (2016). Efficient classification of android malware in the wild using robust static features. Protecting Mobile Networks and Devices: Challenges and Solutions, 1, 181-209.
[42] Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012, February). Hey, you, get off of my market: detecting malicious apps in official and alternative android markets. In Network and Distributed System Security (Vol. 25, No. 4, pp. 50-52).
[43] Truong, H. T. T., Lagerspetz, E., Nurmi, P., Oliner, A. J., Tarkoma, S., Asokan, N., & Bhattacharya, S. (2014, April). The company you keep: Mobile malware infection rates and inexpensive risk indicators. In Proceedings of the 23rd international conference on World wide web (pp. 39-50).
[44] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011, October). Crowdroid: behavior-based malware detection system for android. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices(pp. 15-26).
[45] Rashidi, B., Fung, C., & Vu, T. (2014, September). Recdroid: A resource access permission control portal and recommendation service for smartphone users. In Proceedings of the ACM MobiCom workshop on Security and privacy in mobile environments (pp. 13-18).
[46] Andronio, N., Zanero, S., & Maggi, F. (2015, November). Heldroid: Dissecting and detecting mobile ransomware. In International Workshop on Recent Advances in Intrusion Detection (pp. 382-404). Springer International Publishing.
[47] Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). A review on feature selection in mobile malware detection. Digital Investigation, 13, 22-37.
[48] Tchakounté, F., & Dayang, P. (2013). System calls analysis of malwares on android. International Journal of Science and Technology, 2(9), 669-674.
[49] Wahanggara, V., & Prayudi, Y. (2015, October). Malware Detection through Call System on Android Smartphone Using Vector Machine Method. In Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec), 2015 Fourth International Conference on (pp. 62-67).
[50] Zheng, M., Sun, M., & Lui, J. C. (2014, August). DroidTrace: A ptrace based Android dynamic analysis system with forward execution capability. In Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International (pp. 128-133). IEEE.
[51] Canfora, G., Medvet, E., Mercaldo, F., & Visaggio, C. A. (2015, August). Detecting android malware using sequences of system calls. In Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile(pp. 13-20). ACM.
[52] Lin, Y. D., Lai, Y. C., Chen, C. H., & Tsai, H. C. (2013). Identifying android malicious repackaged applications by thread-grained system call sequences. computers & security, 39, 340-350.
[53] Zhou, Y., & Jiang, X. (2012, May). Dissecting android malware: Characterization and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on (pp. 95-109).
[54] Arora, A., Garg, S., & Peddoju, S. K. (2014, September). Malware detection using network traffic analysis in android based mobile devices. In Next generation mobile apps, services and technologies (NGMAST), 2014 eighth international conference on (pp. 66-71).
[55] Ghaffari, F., & Abadi, M. (2015, October). Droidmalhunter: a novel entropy-based anomaly detection system to detect malicious android applications. In Computer and Knowledge Engineering (ICCKE), 2015 5th International Conference on (pp. 301-306).
[56] Iland, D., Pucher, A., & Schäuble, T. (2011). Detecting android malware on network level. [online], http://cs.ucsb.edu/~iland/AndroidMalwareDetection.pdf.
[57] Wei, T. E., Mao, C. H., Jeng, A. B., Lee, H. M., Wang, H. T., & Wu, D. J. (2012, June). Android malware detection via a latent network behavior analysis. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on (pp. 1251-1258). IEEE.
[58] Malik, J., & Kaushal, R. (2016, July). CREDROID: Android malware detection by network traffic analysis. In Proceedings of the 1st ACM Workshop on Privacy-Aware Mobile Computing (pp. 28-36).
[59] Zheng, M., Sun, M., & Lui, J. C. (2013, July). Droid analytics: a signature based analytic system to collect, extract, analyze and associate android malware. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE International Conference on (pp. 163-171).
[60] Ren, J., Rao, A., Lindorfer, M., Legout, A., & Choffnes, D. (2016, June). Recon: Revealing and controlling pii leaks in mobile network traffic. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (pp. 361-374).
[61] Razaghpanah, A., Vallina-Rodriguez, N., Sundaresan, S., Kreibich, C., Gill, P., Allman, M., & Paxson, V. (2015). Haystack: A Multi-Purpose Mobile Vantage Point in User Space. [online] Available: https://arxiv.org/abs/1510.01419.
[62] Song, Y., & Hengartner, U. (2015, October). Privacyguard: A vpn-based platform to detect information leakage on android devices. In Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices (pp. 15-26). |