參考文獻 |
Ceron, A., Curini, L., & Iacus, S. M. (2014). Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens′ political preferences with an application to Italy and France. New Media & Society 2014, Vol. 16(2) 340-358.
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.
Cover, T. & Hart, P.(1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, vol 13(1), 21-27.
Esuli, A., & Sebastiani, F. (2006). SentiWordNet: A publicly availablelexical resource for opinion mining. In Proceedings of the 5th Conference on Language Resources and Evaluation (LREC’06), pages 417–422, Genova, I.
Gonzalez-Bailon, S., Banchs, R. E., & Kaltenbrunner, A. (2010). Emotional reactionsand the pulse of public opinion: Measuring the impact of political events on thesentiment of online discussions. arXiv preprint arXiv:1009.4019.
Ku, L.-W., & Chen, H.-H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval. Journal of American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information Retrieval, 58(12), pages 1838-1850.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval Vol. 2, No 1-2, 1–135
Strapparava, C., & Valitutti, A. (2004). WordNet - Affect: an Affective Extension of WordNet. Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004), pp. 1083-1086.
Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment strength detection in short informal text. Journal of the American Society for Information Science and Technology, 61(12), 2544–2558.
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media.
Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 115–120, Jeju, Republic of Korea, 8-14 July 2012.
陳稼興、謝佳倫、許芳誠(2007)。以遺傳演算法為基礎的中文斷詞研究。資訊管理研究,第二卷,第二期,2000年7月,27-44。
資策會產業情報研究所(2013)。個人化社群網站使用行為分析。資策會產業情報研究所,未出版。
趙玉娟(2015)。政治網路口碑的情感分析:語意關連性之觀點(碩士論文)。取自臺灣博碩士論文系統。
藺璜、郭姝慧(2003)。程度副詞的特點範圍與分類。山西大學學報,第二期。
洪儷瑜、陳佩盈(2007)。中文句型類型整理。國科會專案研究(NSC 95-2516-S-003-004-MY 3)。
Graph API(無日期)。民106年3月21日,檢自:https://developers.facebook.com/docs/graph-api
ldkrsi(無日期)。結巴中文斷詞台灣繁體版本。民106年2月24日,取自:https://github.com/ldkrsi/jieba-zh_TW
Shih-Ming Wang and Lun-Wei Ku(n.d.). ANTUSD. Retrieved March 1, 2017 from
http://academiasinicanlplab.github.io/
中央研究院(無日期)。中文斷詞系統CKIP。民106年2月24日,檢自:http://ckipsvr.iis.sinica.edu.tw
域動行銷(2015)。2015年第一季台灣網路、行動調查數據報告。民106年7月23日,檢自:http://www.clickforce.com.tw/newspaper/Report/2015Q1.pdf
張華平、劉群(無日期)。ICTCLAS漢語文本詞性標注集。民106年3月28日,檢自:http://sewm.pku.edu.cn/QA/reference/ICTCLAS/FreeICTCLAS/ |