參考文獻 |
參考文獻
1. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5463-7.
2. Fleischmann, R.D., et al., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995. 269(5223): p. 496-512.
3. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
4. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-1351.
5. Li, W.H., et al., Evolutionary analyses of the human genome. Nature, 2001. 409(6822): p. 847-849.
6. Brown, T.A., Genomes 3. 3rd ed. 2006, New York: Garland Science Pub. p.
7. Blattner, F.R., et al., The complete genome sequence of Escherichia coli K-12. Science, 1997. 277(5331): p. 1453-&.
8. Stolc, V., et al., A gene expression map for the euchromatic genome of Drosophila melanogaster. Science, 2004. 306(5696): p. 655-660.
9. Adams, M.D., et al., The genome sequence of Drosophila melanogaster. Science, 2000. 287(5461): p. 2185-2195.
10. Kaul, S., et al., Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000. 408(6814): p. 796-815.
11. Volfovsky, N., et al., Genome and gene alterations by insertions and deletions in the evolution of human and chimpanzee chromosome 22. Bmc Genomics, 2009. 10: p. 13.
12. Messer, P.W. and P.F. Arndt, The majority of recent short DNA insertions in the human genome are tandem duplications. Molecular Biology and Evolution, 2007. 24(5): p. 1190-1197.
13. de la Chaux, N., P.W. Messer, and P.F. Arndt, DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. Bmc Evolutionary Biology, 2007. 7: p. 13.
14. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-8.
15. Parkhill, J., et al., Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature, 2000. 404(6777): p. 502-506.
16. Fischer, G., et al., Chromosomal evolution in Saccharomyces. Nature, 2000. 405(6785): p. 451-454.
17. Nadeau, J.H. and D. Sankoff, Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics, 1997. 147(3): p. 1259-1266.
18. Grant, D., P. Cregan, and R.C. Shoemaker, Genome organization in dicots: Genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 4168-4173.
19. Friedman, D.I., M.J. Imperiale, and S.L. Adhya, RNA 3' end formation in the control of gene expression. Annu Rev Genet, 1987. 21: p. 453-88.
20. Burke, J., et al., Structural conventions for group I introns. Nucleic Acids Res., 1987. 18(15(18):7217-21).
21. Robertson, M.P. and A.D. Ellington, Ribozymes. How to make a nucleotide. Nature, 1998. 395(6699): p. 223-5.
22. Bartel, D.P. and P.J. Unrau, Constructing an RNA world (Reprinted from Trends in Biochemical Science, vol 12, Dec., 1999). Trends in Cell Biology, 1999. 9(12): p. M9-M13.
23. Krylov, D.M., et al., Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Research, 2003. 13(10): p. 2229-2235.
24. Bird, A.P., GENE NUMBER, NOISE-REDUCTION AND BIOLOGICAL COMPLEXITY. Trends in Genetics, 1995. 11(3): p. 94-100.
25. Wolfe, K.H. and D.C. Shields, Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 1997. 387(6634): p. 708-713.
26. Krings, M., et al., Neandertal DNA sequences and the origin of modern humans. Cell, 1997. 90(1): p. 19-30.
27. Hart, D.L., A.R. Lohe, and E.R. Lozovskaya, Modern thoughts on an ancyent marinere: Function, evolution, regulation. Annual Review of Genetics, 1997. 31: p. 337-358.
28. Robertson, H.M., et al., Reconstructing the ancient mariners of humans. Nature Genetics, 1996. 12(4): p. 360-361.
29. Rubin, G.M., et al., Comparative genomics of the eukaryotes. Science, 2000. 287(5461): p. 2204-2215.
30. Lynch, M. and J.S. Conery, The origins of genome complexity. Science, 2003. 302(5649): p. 1401-1404.
31. Smith, H.O., et al., Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science, 1995.
32. Karlin, S., C. Burge, and A.M. Campbell, Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res, 1992. 20(6): p. 1363-70.
33. Colbert, T., A.F. Taylor, and G.R. Smith, Genomics, Chi sites and codons: [`]islands of preferred DNA pairing' are oceans of ORFs. Trends in Genetics, 1998. 14(12): p. 485-488.
34. Hsieh, L.-C. and H.C. Lee, Universal Lengths of Bacterial Genomes and Model for Genome Growth. NCU Ph.D. thesis, 2002.
35. Chen, H.-D., et al., Divergence and Shannon Information in Genomes. Physical Review Letters, 2005. 94(17): p. 178103.
36. Bailey, J.A., et al., Recent segmental duplications in the human genome. Science, 2002. 297(5583): p. 1003-1007.
37. Liu, G., et al., Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. Genome Research, 2003. 13(3): p. 358-368.
38. Saakian, D.B., Evolution models with base substitutions, insertions, deletions, and selection. Physical Review E, 2008. 78(6): p. 6.
39. Saakian, D.B., Z. Kirakosyan, and C.K. Hu, Diploid biological evolution models with general smooth fitness landscapes and recombination. Physical Review E, 2008. 77(6): p. 10.
40. Saakian, D.B., A new method for the solution of models of biological evolution: Derivation of exact steady-state distributions. Journal of Statistical Physics, 2007. 128(3): p. 781-798.
41. Messer, P.W., P.F. Arndt, and M. Lassig, Solvable sequence evolution models and genomic correlations. Physical Review Letters, 2005. 94(13): p. 4.
42. Nikolaou, C. and Y. Almirantis, Deviations from Chargaff's second parity rule in organellar DNA - Insights into the evolution of organellar genomes. Gene, 2006. 381: p. 34-41.
43. Albrecht-Buehler, G., Asymptotically increasing compliance of genomes with Chargaff's second parity rules through inversions and inverted transpositions. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(47): p. 17828-17833.
44. Tillier, E.R.M. and R.A. Collins, Genome rearrangement by replication-directed translocation. Nature Genetics, 2000. 26(2): p. 195-197.
45. Forsdyke, D.R. and S.J. Bell, Purine loading, stem-loops and Chargaff's second parity rule: a discussion of the application of elementary principles to early chemical observations. Appl Bioinformatics, 2004. 3(1): p. 3-8.
46. Frank, A.C. and J.R. Lobry, Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene, 1999. 238(1): p. 65-77.
47. Kong, S.G., et al., Inverse symmetry in complete genomes and whole-genome inverse duplication. 2009.
48. Necsulea, A. and J.R. Lobry, A new method for assessing the effect of replication on DNA base composition asymmetry. Mol Biol Evol, 2007. 24(10): p. 2169-79.
49. Tillier, E.R. and R.A. Collins, Genome rearrangement by replication-directed translocation. Nat Genet, 2000. 26(2): p. 195-7.
50. Rosenblatt, M., A CENTRAL LIMIT THEOREM AND A STRONG MIXING CONDITION. Proc Natl Acad Sci U S A, 1956. 42(1): p. 43-7.
51. Li, W. and K. Kaneko, LONG-RANGE CORRELATION AND PARTIAL 1/F-ALPHA SPECTRUM IN A NONCODING DNA-SEQUENCE. Europhysics Letters, 1992. 17(7): p. 655-660.
52. Peng, C.K., et al., LONG-RANGE CORRELATIONS IN NUCLEOTIDE-SEQUENCES. Nature, 1992. 356(6365): p. 168-170.
53. Voss, R.F., EVOLUTION OF LONG-RANGE FRACTAL CORRELATIONS AND 1/F NOISE IN DNA-BASE SEQUENCES. Physical Review Letters, 1992. 68(25): p. 3805-3808.
54. Martin, A.P., Increasing genomic complexity by gene duplication and the origin of vertebrates. American Naturalist, 1999. 154(2): p. 111-128.
55. Lynch, M., Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. Molecular Biology and Evolution, 1997. 14(9): p. 914-925.
56. Bowers, J.E., et al., Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 2003. 422(6930): p. 433-438.
57. Lynch, M. and J.S. Conery, The evolutionary fate and consequences of duplicate genes. Science, 2000. 290(5494): p. 1151-1155.
58. Force, A., et al., Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999. 151(4): p. 1531-1545.
59. Holland, P.W.H., et al., GENE DUPLICATIONS AND THE ORIGINS OF VERTEBRATE DEVELOPMENT. Development, 1994: p. 125-133.
60. Hughes, A.L., THE EVOLUTION OF FUNCTIONALLY NOVEL PROTEINS AFTER GENE DUPLICATION. Proceedings of the Royal Society of London Series B-Biological Sciences, 1994. 256(1346): p. 119-124.
61. Hughes, M.K. and A.L. Hughes, EVOLUTION OF DUPLICATE GENES IN A TETRAPLOID ANIMAL, XENOPUS-LAEVIS. Molecular Biology and Evolution, 1993. 10(6): p. 1360-1369.
62. Lynch, M. and A. Force, The probability of duplicate gene preservation by subfunctionalization. Genetics, 2000. 154(1): p. 459-473.
63. Deckert, G., et al., The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature, 1998. 392(6674): p. 353-358.
64. Csink, A.K. and S. Henikoff, Something from nothing: The evolution and utility of satellite repeats. Trends in Genetics, 1998. 14(5): p. 200-204.
65. She, X.W., et al., Shotgun sequence assembly and recent segmental duplications within the human genome. Nature, 2004. 431(7011): p. 927-930.
|