博碩士論文 104521109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.117.94.180
姓名 張凱彥(Kai-Yen Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用傳輸線型變壓器於C/X頻段之CMOS功率放大器與Ku頻段之GaN功率放大器之研製
(C/X-band CMOS Power Amplifiers and a Ku-band GaN Power Amplifier Using Transmission-Line Transformer Technique)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用tsmcTM 0.18-µm、tsmcTM 90-nm與WIN 0.25-µm GaN製程設計三顆功率放大器,電路設計上選擇操作於C/X頻段與Ku頻段,首先模擬不同製程之電晶體特性,選出最佳之電晶體大小與操作電流密度,結合變壓器形成寬頻匹配,最後量測電路特性以驗證電路設計之結果。
第一顆使用0.18-m CMOS製程於C/X頻帶之寬頻功率放大器,此功率放大器為兩級電路,採用電晶體疊接架構,輸出端使用傳輸線型變壓器,輸入端與級間匹配使用磁耦合變壓器作寬頻匹配,3 dB頻寬為5.1-11.5 GHz,傳輸增益為25.23 dB,飽和輸出功率為24.34 dBm,1-dB 增益壓縮點輸出功率為20.64 dBm,晶片面積為1.78 (1.968 × 0.904) mm2。
第二顆為應用傳輸線型變壓器於C/X頻帶之90-nm CMOS寬頻功率放大器,此電路延續第一顆電路設計,電路為兩級功率放大器設計,輸出端及級間匹配採用傳統型變壓器,輸入端採用傳輸線型變壓器作匹配,3 dB頻寬為5.1-11.2 GHz,傳輸增益為29.1 dB,飽和輸出功率為22.02 dBm,1-dB 增益壓縮點輸出功率為19.64 dBm,晶片面積為1.32 (1.522 × 0.866) mm2。
第三顆為應用0.25-m GaN製程於Ku頻帶之寬頻功率放大器,電路設計採全積體化之兩級共源級電路架構,傳輸線型變壓器運用於輸入端及輸出端以提供寬頻功率匹配,其3 dB頻寬為13-18.2 GHz,傳輸增益為14.71 dB,飽和輸出功率為32.26 dBm,1-dB 增益壓縮點輸出功率為27.6 dBm,晶片面積為3.13 (2.16 × 1.448) mm2。
摘要(英)
The thesis developed three power amplifiers that were designed in tsmcTM 0.18-µm CMOS, tsmcTM 90-nm CMOS and WIN 0.25-µm GaN for both C/X-band and Ku-band operations. Firstly, the transistor characteristics of different processes were simulated to choose best transistor size and current density. The broadband matching performance was realized by using transformer and Guanella-type transmission-line transformers. Finally, the design concepts were verified by measuring various circuit performances, such as s parameters, output power, linearity and digital modulation characteristics.
The first power amplifier was fabricated in tsmcTM 0.18-µm CMOS technology for C/X-band operation. The two-stage power amplifier adopted cascade topology. The broadband performance was achieved by using transmission-line transformer for output matching and magnetic transformer for both input and inter-stage matching networks. The measurement results of the first PA shows a small signal gain of 25.23 dB, the saturated output power (Psat) and the maximum power added efficiency (PAEMAX) are 24.34 dBm and 28.2%, respectively. The performances of the output 1-dB gain compression point (OP1dB) of 20.64 dBm. The chip area is 1.78(1.968×0.904) mm2.
The second circuit was fabricated in tsmcTM 90-nm CMOS technology for C/X-band operation. The circuit design flow follows the previous PA design which uses both transmission-line transformer and magnetic transformers to achieve broadband and low lossmatching. The wideband PA exhibits a peak gain of 29.1 dB, and 3-dB bandwidths from 5.1-11.2 GHz. The measured saturation output power, OP1dB, and maximum PAE are 22.02 dBm, 19.64 dBm, and 23.92%, respectively. The chip size is 1.32 (1.522×0.866) mm2.
The third chip presents a Ku-band monolithic microwave integrated circuit (MMIC) power amplifier in WIN 0.25-µm GaN technology. The broadband performance was achieved by using transmission-line transformer for both input and output matching networks. The amplifier achieves a 3-dB bandwidth from 13 to 18.2 GHz with small signal gain of 14.71 dB. Continuous wave measurements demonstrate a maximum saturated output power of 32.26 dBm and OP1dB of 27.6 dBm, respectively. The chip size is 3.13 (2.16 × 1.448) mm2.
關鍵字(中) ★ 功率放大器
★ 傳輸線型變壓器
關鍵字(英) ★ power amplifier
★ transmission-line transformer
論文目次
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用傳輸線型變壓器之CMOS寬頻功率放大器研製 3
2-1 前言 3
2-2 磁耦合變壓器與傳輸線型變壓器 3
2-2-1 磁耦合變壓器簡介 3
2-2-2 傳輸線型變壓器 7
2-3 研究現況 10
2-4 應用傳輸線型變壓器於C/X頻帶之0.18-mm CMOS寬頻功率放大器 12
2-4-1 應用傳輸線型變壓器之0.18-mm CMOS寬頻功率放大器設計 12
2-4-2 電路模擬與量測結果 21
2-4-3 結果比較與討論 33
2-5 應用傳輸線型變壓器於C/X頻帶之90-nm CMOS寬頻功率放大器 35
2-5-1 應用傳輸線型變壓器之90-nm CMOS寬頻功率放大器設計 35
2-5-2 電路模擬與量測結果 45
2-5-3 結果比較與討論 57
第三章 應用傳輸線型變壓器匹配之GaN寬頻功率放大器 62
3-1 研究現況 62
3-2 應用傳輸線型變壓器於Ku頻帶之GaN寬頻功率放大器 64
3-2-1 應用傳輸線型變壓器於Ku頻帶之GaN寬頻功率放大器設計 64
3-2-2 電路模擬與量測結果 71
3-2-3 結果比較與討論 83
第四章 結論 86
4-1 結論 86
4-2 未來方向 87
參考文獻 88
參考文獻
[1] A. M. Niknejad, D. Chowdhury and J. Chen, “ Design of CMOS power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1784-1796, Jun. 2012.
[2] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,“ IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[3] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008.
[4] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[5] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K.T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer, ” IEEE J. Solid-State Circuits, of , vol.47, no.3, pp.599-614, Mar. 2012.
[6] P. Haldi, G. Liu and A. M. Niknejad, “CMOS compatible transformer power combiner,” Electron. Lett., vol. 42, no.19, pp. 1091-1092, Sep. 2006.
[7] C. L. Ruthroff, “Some broadband transformers,” Proc. IRE, vol. 47, pp. 1337-1342, Aug. 1959.
[8] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327-329, Sep. 1944.
[9] H.-K. Chiou, H.-Y. Chung, Y.-C. Hsu, D.-C. Chang, and Y.-Z. Juang, “Broadband and high-efficiency power amplifier that integrates CMOS and IPD technology,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 3, no. 9, pp. 1489–1497, Sep. 2013.
[10] P.-H. Chen, H.-K. Chiou and Y.-C. Wang, “A K-band 24.1% PAE wideband unilateralized CMOS power amplifier using differential transmission-line transformers in 0.18-mm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 11, pp. 924-926, Nov. 2016.
[11] B.-H. Ku, S.-H. Baek and S. Hong, “A X-band CMOS power amplifier with on-chip transmission line transformer,” IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., pp. 523-526, Jun. 2008.
[12] P.-S. Chi, Z.-M. Tsai, J.-L. Kuo, K.-Y. Lin, and H. Wang, “An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-μm CMOS technology,” 40th European Microwave Conference (EuMC), Paris, France, vol. 28-30, pp.1678-1681, Sep. 2010.
[13] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[14] B.-H. Ku, S.-H. Back, and S. Hong, “A wideband transformer-coupld CMOS power amplifier for X-band multifunction chip,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[15] S. Park and S. Jeon, “Wideband harmonic-tuned CMOS power amplifier with 19.5 dBm output power and 22.6% PAE over entire X-band,” IEEE Electron. Lett., Vol. 51, no.9, pp.703-705, 2015.
[16] J.-H. Tsai, and J.-W. Wang, “An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer,” IEEE Microw. Wireless Compon. Lett., vol. PP, no. 99, pp. 1-3, 2017.
[17] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[18] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio, ” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[19] J. S. Hong, “Couplings of asynchronously tuned coupled microwave resonators,” IEEE Proc. Microwaves, Antenna and Propagation, vol. 147, pp.354-358, Oct. 2000.
[20] Y. S. Noh, Y. H. Choi and I. Yom, “Ku-band GaN HPA MMIC with high-power and high-PAE performances,” IEEE ELECTRONICS LETTERS., Vol. 50 No. 19 pp. 1361–1363, Sep. 2014.
[21] D. Kim, D. H. Lee, S. Sim, L. Jeon and S. Hong, “An X-Band Switchless Bidirectional GaN MMIC Amplifier for Phased Array Systems,” IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 12, Dec., 2014.
[22] R. Quaglia, V. Camarchia, and M. Pirola, “Dual-band GaN MMIC power amplifier for microwave backhaul applications,’’ IEEE Microw. Wireless Compon. Lett., VOL. 24, NO. 6, JUNE 2014.
[23] A. Biondi, S. D’Angelo, F. Scappaviva, D. Resca and V. A. Monaco, “Compact GaN MMIC T/R module front-end for X-band pulsed rader,” in IEEE Eur. Microw. Integr. Circuits Conf. (EuMIC), pp.297-300, 2016.
[24] Y. Yuan, Y. Fan, Z. Chen, Z. Yang and H. Lin, “Ku-band pre-matched broadband GaN power amplifier with over 30 W power,’’ IEEE Electronics Lett., Vol. 52 No. 10 pp. 872–874, May. 2016.
[25] H. Q. Tao, W. Hong, B. Zhang and X. M. Yu, “A Compact 60W X-Band GaN HEMT power amplifier MMIC,” IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 1, January 2017.
[26] P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, H. Wang, “A 17-35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique,” IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, pp.112-119, Jan. 2012.
[27] Agilent-5988-5411EN, IEEE 802.11 wireless LAN PHY Layer (RF) operation and measurement (AN1380-2).
[28] IEEE Std 802.11™-2009, IEEE Standard 802.11, 2009.
[29] O. Degani et al., “A 1×2 MIMO multi-band CMOS transceiver with an integrated front-end in 90nm CMOS for 802.11a/g/n WLAN applications,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 356–619.
[30] A. Afsahi, A. Behzad, V. Magoon, and L. E. Larson, “Linearized dual-band power amplifiers with integrated baluns in 65 nm CMOS for a 2 × 2 802.11n MIMO WLAN SoC,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 955–966, May 2010.
[31] C.-J. Chang, P.-C. Wang, C.-Y. Tsai, C.-L. Li, C.-L. Chang, H.-J. Shih, M.-H. Tsai, W.-S. Wang, K.-U. Chan and Y.-H. Lin, “A CMOS transceiver with internal PA and digital pre-distortion for WLAN 802.11a/b/g/n applications,” IEEE RFIC Symp. Dig., June 2010, pp. 435-438.
[32] E. Kaymaksut and P. Reynaert, “Transformer-based uneven Doherty power amplifier in 90-nm CMOS for WLAN applications,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1659–1671, May 2012.
[33] B. Francois and P. Reynaert, “A fully integrated transformer-coupled power detector with 5 GHz RF PA for WLAN 802.11ac in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1237–1250, May 2015.
[34] R. Winoto et al., “A 2 × 2 WLAN and bluetooth combo SoC in 28nm CMOS with on-chip WLAN digital power amplifier, integrated 2G/BT SP3T switch and BT pulling cancelation,” IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 170–171, Jan. 2016.
[35] 廖顯原,「應用於矽基功率放大器之傳輸線變壓器與穿透矽通孔之研究」,國立中央大學,博士論文,民國100年。
[36] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
[37] 陳柏勳,「應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製」,國立中央大學,碩士論文,民國103年。
[38] 林厚安,「應用傳輸線型變壓器與自適應偏壓於C/X頻段之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國104年。
[39] 林佳慧,「應用單向化預失真、傳輸線型變壓器與二元功率結合技術於C/X頻段之寬頻全積體功率放大器之研製」,國立中央大學,碩士論文,民國105年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2017-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明