博碩士論文 104521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.141.30.162
姓名 謝幀廷(Zheng-Ting Xie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有鋅擴散/氧化掏離結構之超高速(> 50 Gbit/sec) 940 nm光波段之垂直共振腔面射型雷射
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Optical interconnect (OI)技術在下一個世代的目標是達到56Gbps的data rate,為了達到此目標vertical-cavity surface-emitting laser (VCSEL)的3dB頻寬必須達到30GHz以上,不僅在常溫特性要好且在85℃的3dB頻寬也不能掉太多。在論文裡會探討940nm VCSEL的元件設計,藉由鋅擴散以及成長一層current spreading使元件電阻接近50歐姆,使元件與外部驅動電路有良好的阻抗匹配,並且探討水氧化掏離的技術對VCSEL的特性有什麼影響。首先,在相同水氧孔徑(~6µm)下比較有掏離以及沒有掏離的元件特性,結果顯示有氧化掏離的元件在室溫可達到30GHz,在85℃為24GHz,而沒有進行氧化掏離的元件在室溫下只能達到26GHz,且85℃為21GHz,所以透過氧化掏離可以有效提升VCSEL的3dB頻寬並且改善高溫特性。
同時在論文中也會做不同水氧孔徑(5~6µm & 3~4µm)以及和其他實驗團隊的980nm VCSEL做比較。其他實驗團隊的980nm VCSEL透過優化VCSEL共振腔內的光子壽命,使元件可以在室溫達到26.6GHz,在85℃為24.5GHz,有良好的高溫特性。而在相同的水氧孔徑下(~5µm),我們透過水氧掏離以及鋅擴散製程,使我們的VCSELs在室溫下的3dB頻率可以達到31GHz,在85℃則可達到29GHz,同樣有非常良好的高溫特性。接著是我們團隊改變氧化孔徑的實驗,結果顯示縮小水氧孔徑後的元件(3~4µm) 3dB頻寬雖然沒有提高,但是仍有較高的調變效率以及較好的傳輸速率(>50Gbps)。
摘要(英)
High-speed, high-efficiency, and low power consumption vertical-cavity surface-emitting lasers (VCSELs) that operate at a wavelength of 850nm or around 1000nm have lately attracted a lot of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the modulation speed of VCSELs is one of the most important ways to meet the required data rate (56 Gbit/sec) for next generation OIs. Recently, the 850 nm VCSEL with a 30 GHz E-O bandwidth has been demonstrated, which can satisfy the >50 Gbit/sec on-off keying (OOK) transmission over OM4 multi-mode fiber (MMF). However, when the ambient temperature (T) reaches 85℃, the pre-emphasis driving circuit is usually necessary to be integrated with VCSEL to compensate the high-T induced speed degradation. To increase the detuning wavelength (~20 nm) in 850 nm VCSEL, or shift the lasing wavelength of VCSEL to 980 nm are both promising way to improve the high-T performance of VCSEL. Recently, by optimizing the photon lifetime inside the 980 nm VCSEL cavity, an almost invariable 3-dB E-O bandwidth as high as around 26 GHz and 50 Gbit/sec transmission data rate from RT to 85℃ operations can be achieved. In this work, we demonstrate a novel 940 nm VCSEL for the application of shortwave wavelength division multiplexing (SWDM) over MMF with state-of-the-art dynamic performances. By use of Zn-diffusion and oxide-relief apertures, such device can have a nearly 50Ω differential resistance, which usually matches very well with the external driving circuit, and achieve a 30 and 26 GHz 3-dB E-O bandwidth under RT and 85℃ operations, respectively.
關鍵字(中) ★ 面射型雷射 關鍵字(英) ★ VCSEL
論文目次 目錄
摘 要 i
Abstract iii
致謝 iv
目錄 v
第一章 序論 1
1-1 簡介 1
1-2 SWDM發展歷程 3
1-3 面射型雷射簡介 5
1-4 面射型雷射的電流侷限 6
1-5 氧化層的結構技術 8
第二章 理論 11
2-1 VCSEL的磊晶結構 11
2-2 VCSEL的選擇性水氧化理論 15
2-3 高速單模態VCSEL製作 17
2-4 水氧化系統 21
2-5 IR系統 23
2-6 發散角 24
第三章 實驗 26
3-1 鋅擴散 26
3-2 水氣氧化 28
3-3 製作電極(P-metal 和N-metal) 31
3-4金屬回火(Annealing)和平坦化 32
3-5 Isolation(把每個元件阻隔開) 33
3-6 Via 33
第四章 量測結果與討論 36
4-1量測系統 36
4-1-1. 電流對電壓(I-V)的量測 36
4-1-2. 光功率對電流(L-I)之量測 36
4-1-3. 頻譜(Spectrum) 之量測系統 37
4-1-4. 頻寬(Bandwidth)之量測系統 38
4-1-5. 眼圖(Eye pattern)之量測系統 38
4-2水氧化掏離量測與比較 40
4-2-1. VCSEL元件結構圖 40
4-2-2. 電流對電壓(I-V)及輸出光功率對電流 (L-I)曲線 41
4-2-3. 光頻譜(Optical spectra)圖 43
4-2-4. 頻寬(Bandwidth) 44
4-3改變氧化孔徑(Oxide aperture)之量測與比較 45
4-4與Bimberg實驗團隊(980nm VCSEL) 之比較 52
4-4-1.VCSEL元件結構比較 52
4-4-2. VCSEL元件特性比較[42] 53
第五章 結論與未來研究 55
Reference 57
參考文獻

[1] Daniel M. Kuchta, IBM T. J. Watson Research Center, “High-Capacity VCSEL Links” OFC 2017, Mar. 2017.
[2] S. Nakagawa, D. Kuchta,C. Schow, R John, A .Larry .Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb., 2008.
[3] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared
and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum Electronics, vol. 33, no. 10,pp. 1810-1824, Oct.,1997.
[4] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting laser:Moving from research to manufacturing,”Proc. IEEE, vol. 85, no. 11,pp. 1730-1739, Nov., 1997.
[5] Y-C chang, L. A. Coldrem “Effocoent,High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 15, no.3, pp.704-715, May., 2009.
[6] Y. Mohammad “Optimizing Optical output power of single-mode vcsels using multiple oxide layer,” IEEE Journal of Quantum Electronics, vol. 19, no. 4 , July., 2013.
[7] 顏志成,“具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,” 國立中央大學研究所論文(民國101)
[8] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo,, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE Journal of Quantum Electronic, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[9] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sept., 1990.
[10] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[11] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[12] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, April, 1993.
[13] J. A. Van Vechten, “ Intermixing of an AlAs-GaAs superlattice by Zn diffusion ,” J. Appl. Phys. vol 55, no.10, pp.7082-7084, Oct., 1984.
[14] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion, ”Appl. Phys. Lett., vol. 38, no.10, pp. 776-778 , May,1981.
[15] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Tech., no. 4, pp. 841-846, 1989.
[16] 陳志誠,“穩態單橫模和穩定極化的面射型雷射,”國立台灣大學電機工程學系博士論文 (民國90年)
[17] R. G. Hunsperger, Integrated Optics: Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[18] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, “Diffusion of zinc into Ga1-xAlxAs ,” Appl. Phys. Lett., vol 47, no.11, pp.1193-1195, 1985.
[19]C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[20] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec .,1965.
[21] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InPstrained multilayer heterostructures,” J. Appl. Phys., vol. 72,p. 5213, 1992.
[22] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, June, 1997.
[23] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[24] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[25] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, pp.1935-1937 ,1996.
[26] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, June, 1996.
[27] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp.1723-1725, 1995.
[28] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[29] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12, 2007.
[30] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold 57 planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[31] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[32] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604, Aug. , 2005.
[33] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh ,T.Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. , 2004.
[34] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[35] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. ,vol. 25, no.18, pp. 1823–1825, 2013.
[36] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers, ” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99–108, Jan., 2003.
[37] H. A. Haus, “Waves and Fields in Optoelectronics,” Preritice-Hall, Englewood Cliffs, NJ, p.99, 1984 .
[38] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Tech .Lett., vol. 20, no. 13, pp. 1121-1123, 2008.
[39] W. W. Chow, K. D. Choquette, H. Mary. Crawford, L. Lear. Kevin, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810-1824, 1997.
[40] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007.
[41] Gunter Larisch, Philip Moser, Member, IEEE, James A. Lott, Senior Member, IEEE, and Dieter Bimberg, Fellow, IEEE, “Impact of Photon Lifetime on the Temperature Stability of 50 Gb/s 980 nm VCSELs,” IEEE Photonics Technology Letters, Vol. 28, Nov., 2016.
[42] P. Moser, J.A. Lott, P. Wolf, G. Larisch, H. Li and D. Bimberg,” Error-free 46 Gbit/s operation of oxideconfined 980 nm VCSELs at 85°C,” Electronics letters, Sept., 2014.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明