博碩士論文 104521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.217.175.179
姓名 陳羿瀚(Yi-Han Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速、低暗電流具有雙電荷層正面收光InAlAs 累增崩潰光二極體
相關論文
★ E2T-iSEE:應用於事件與情感狀態轉移排程器之編輯★ “偶”:具情感之球型機器人
★ 陣列區塊電容產生器於製程設計套件之評量★ 應用於數位家庭整合計畫影像傳輸子系統之設計考量與實現
★ LED 背光模組靜電放電路徑★ 電阻串連式連續參考值產生器於製程設計套件之評量
★ 短篇故事分類與敘述★ 延伸考慮製程參數相關性之類比電路階層式變異數分析器
★ 以電子電路觀點對田口式惠斯登電橋模擬實例的再分析★ 應用於交換電容ΔΣ調變電路之電容排列良率自動化擺置平台
★ 陣列MiM電容的自動化佈局★ 陣列MiM電容的平衡接點之通道繞線法
★ 氣象資訊達人★ 嵌入式WHDVI多核心Forth微控制器之設計
★ 應用於電容陣列區塊之維持比值良率的通道繞線法★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們提出具高傳輸(大於25 Gbit/sec)、高速且低暗電流表現的正面收光且藉由蝕刻出圓柱的In0.52Al0.48As累增崩潰光二極體。為了避免元件表面崩潰和繁瑣的保護環結構(Guard ring structure),此元件磊晶結構主要是N型參雜在磊晶片的下方,且由In0.52Al0.48As組成的累增(Multiplication)層則設計靠近N型參雜並在整個磊晶結構的下方。
此外,我們設計元件結構用三個圓柱裡面包含兩層電荷(Charge)層,以此方式去把累增層裡的電場強烈得局限在中心並減少圓柱周圍的崩潰機會。與背面收光和成本較高的覆晶封裝技術(flip-chip bond)相比,我們提出的元件有簡單的正面收光結構、有較大的30 m主動區半徑能更輕易地去做光學上的對光、可以在單位增益下(unit gain)達到合理的擊穿響應度(0.7 A/W使用1.31 m的波長量測)和在低增益(MG= ~ 3)下操作可以擁有良好的3-dB頻率響應(22.5 GHz)。除此之外,我們提出的元件在1.31 m的波長下操作時,可以在中度增益(MG = ~ 5)下承受廣範圍光功率(-17到+4.6 dBm)的變化並同時擁有15 GHz的3-dB 頻率響應。元件在1.55 m的波長下做28 Gbit/sec 傳輸時,有良好的靈敏度(-16 dBm)。
摘要(英)
A novel type of top-illuminated, etch-mesa In0.52Al0.48As-based avalanche photodiode (APD) with high-speed (>25 Gbit/sec), low dark current performance has been demonstrated. The 25G APD device is composed of n-side down design with the In0.52Al0.48As multiplication (M) layer buried at the bottom to avoid the issues of surface breakdown and complex guard ring structure.
In addition, we demonstrate that the new structure with two charge layers and triple mesas can effectively confine the electric-field within the center of M-layer and minimize the edge breakdown around the periphery of mesa. In contrast to the costly flip-chip bonding package with backside illumination, our demonstrated device is based on a simple top-illuminated structure that includes a large active diameter of 30m for easy optical alignment, a reasonable punch-through responsivity (0.7 A/W at 1.31 m wavelength), and a good 3-dB optical-to-electrical (O-E) bandwidth (22.5 GHz) under low gain operations (MG= ~3). Furthermore, it can sustain the 3-dB bandwidth of 15 GHz over a wide range of launched optical power (-17 to +4.6 dBm) under a moderate gain (MG= ~5) operation at 1.31 m wavelength. High-sensitivity (-16 dBm) for error-free 28 Gbit/sec operation can also be achieved at 1.55 m wavelength.
關鍵字(中) ★ 累增崩潰光二極體
★ 光偵測器
關鍵字(英) ★ APD
★ InAlAs
論文目次
Abstract............................................i
摘要................................................ii
致謝................................................iii
目錄................................................v
圖目錄..............................................vii
表目錄..............................................xi
第一章 序論..........................................1
§1-1 網路時代與資料中心..............................1
§1-2 高功率電致吸收調變雷射(EML)和高敏感光偵測器.......3
§1-3 傳統的累增崩潰光二極體...........................7
§1-4 分離式吸收、電荷、累增之累增崩潰光二極體(SACM APD) .....................................................10
§1-5 InP based SACM累增崩潰光二極體...................12
§1-6 10 GBit/sec InAlAs based SACM累增崩潰光二極體 ......................................................14
§1-7 25 GBit/sec InAlAs based SACM累增崩潰光二極體 ......................................................18
§1-8 論文動機與架構....................................21
第二章 累增崩潰光二極體之設計與製作......................22
§2-1 累增崩潰光二極體之設計與模擬.......................22
第三章 累增崩潰光檢測器之量測與結果討論..................50
§3-1 量測系統之架設....................................50
§3-2 量測結果..........................................53
第四章 結論與未來研究方向...............................66
§4-1 結論.............................................66
§4-2 未來研究方向......................................67
參考文獻................................................68
附錄...................................................71
參考文獻
[1] http://www.ieee802.org/3/ba/
[2] Juniper Network:100GBASE-ER4 Spec_https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/specifications/transceiver-m-mx-t-series-100gebase-optical-specifications.html#jd0e267
[3] FOSCO: Loss spectrum of a single mode fiber_https://www.fiberoptics4sale.com/blogs/archive-posts/95052294-optical-fiber-attenuation
[4] T. Fujisawa, M. Arai, N. Fujiwara, W. Kobayashi, T. Tadokoro, K. Tsuzuki, Y. Akage, R. Iga, T. Yamanaka, and F. Kano, “First 40-km SMF Transmission for 100-Gbit/s Ethernet System Based on 25-Gbit/s 1.3-m Electroabsorption Modulator Integrated with a DFB Laser Module,” Proc. ECOC 2009, Vienna, Austria, Sep., 2009, pp. 8.6.4.
[5] S. Kanazawa, T. Fujisawa, K. Takahata, T. Ito, Y. Ueda, W. Kobayashi, H. Ishii, and H. Sanjoh, “Flip-Chip Interconnection Lumped-Electrode EADFB Laser for 100-Gb/s/λ Transmitter,” IEEE Photon. Tech. Lett., vol. 27, no. 16, pp. 1699-1701, Aug., 2015.
[6] http://www.ieee802.org/3/av/public/2006_11/3av_0611_lee_1.pdf
[7] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, 2001.
[8] George M. Williams and Andrew S. Huntington, “Probabilistic analysis of Linear Mode vs Geiger Mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE, vol. 6220, no. 622008, 2006.
[9] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three- Dimensional Imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350, 2002.
[10] H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEE Electron. Lett., vol. 39, no. 16, pp. 1199-1201, Aug. 2003.
[11] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8, pp. 1160-1162, Aug. 2002.
[12] M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, “High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers,” Proc. OFC 2000, Baltimore, MD, USA, vol. 4, pp. 324-326, 2000.
[13] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8, pp. 1160-1162, Aug. 2002.
[14] H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APD’s,” J. Lightw. Technol., vol. 6, no. 10, pp.1496-1501, Oct. 1988.
[15] Mohammad A. Saleh, Majeed M. Hayat, Paul P. Sotirelis, Archie L. Holmes, Joe C. Campbell, Bahaa E. A. Saleh and Malvin Carl Teich ”Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes,” IEEE Transactions on Electron Devices, vol. 48, pp. 2722-2731, DEC 2001.
[16] J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
[17] E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-3693, Dec., 2007.
[18] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep., 2006.
[19] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki, “Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability,” IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.
[20] http://www.albisopto.com/wp-content/uploads/2017/03/ProductBrief_APD16L_A4.pdf
[21] M. Nada, T. Yoshimatsu, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “Design and Performance of High-Speed Avalanche Photodiodes for 100-Gb/s Systems and Beyond,” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 5, pp. 984-990, March, 2015.
[22] X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. A. Tulchinsky, and K. J. Williams, “High-Saturation-Current InP-InGaAs Photodiode With Partially Depleted Absorber” IEEE Photon. Technol. Lett., vol. 15, pp. 1276-1278, Sep., 2003.880, April, 2005.
[23] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55 m Wavelength” IEEE Photon. Tech. Lett vol. 17, pp.878-880, April, 2005.
[24] Y. L. Goh, J. S. Ng, C. H. Tan, W. K. Ng, and J. P. R. David, “Excess Noise Measurement in In0.53Ga0.47As,” IEEE Photon. Tech. Lett., vol. 17, pp. 2412-2414, Nov., 2005.
[25] M. Nada, S. Kanazawa, H. Yamazaki, Y. Nakanishi, W. Kobayashi, Y. Doi, T. Ohyama, T. Ohno, K. Takahata, T. Hashimoto, and H. Matsuzaki, “High-linearity Avalanche Photodiode for 40-km Transmission with 28-Gbaud PAM-4,” Proc. OFC 2015, Los Angeles, CA, USA, March, 2015, pp. M3C.2
[26] M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-Bandwidth Product Back-Side Illuminated AlInAs Avalanche Photodiodes,” IEEE Photon. Tech. Lett., vol. 22, no. 18, pp. 1373-1375, Sep., 2010.
[27] Jin-Wei Shi and C.-W. Liu, "Design and Analysis of Separate-Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors" IEEE/OSA Journal of Lightwave Technology, vol. 22, pp.1583-1590, June, 2004.
[28] Jin-Wei Shi, Kai-Lun Chi, Chi-Yu Li, and Jhih-Min Wun “Dynamic Analysis of High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical Interconnect across a Wide Optical Window (0.85 to 1.55 m),” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 4, pp. 921-927, Feb., 2015.
指導教授 許晉瑋、陳竹一(Jin-Wei Shi Jwu-E Chen) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明