博碩士論文 942202003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.216.81.51
姓名 廖振廷(Chen-Ting Liao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 微粒聲波與微粒電漿微泡之粒子動力學
(Microscopic Particle Dynamics in Dust Acoustic Waves and Dusty Plasma Bubbles)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 聲波是一種在日常生活中隨處可聽聞的物理現象,同時也是教科書中用以說明縱波(疏密波,密度波)的典型範例。巨觀而言,雖然我們可以用連續的流體力學方程式來描述它,但是就微觀的原分子尺度或是流體元而言,我們對於微觀粒子的運動細節卻所知有限。粒子在波中運動時,真的只是在原地做簡諧震盪而已嗎?在微粒電漿系統中,微粒聲波可以自發性的生成。因此在本研究中,我們藉由高速光學顯微影像系統觀察微粒聲波,並且分析該波與微粒的交互作用與其動力學,以作為我們對於疏密波這一常見物理現象中,巨觀和微觀圖像的橋樑。
在弱游離的電漿中置入微米大小的顆粒,即可成為所謂的微粒電漿。由於該系統為一強耦合之多體系統,不穩定性與集體之行為在適當的參數調控或是外加驅動下即可產生,前者例如微粒聲波,後者例如脈衝雷射誘發之微粒電漿微泡。微粒聲波在背景壓力低於某一閥值即可自行生成,此為多項不穩定性所導致的自激發結果。藉由分析粒子數量密度的時空演化圖,我們可以看出波動的巨觀行為,例如波長和波速。另外,我們所用的分析方式還包括了計算其空間中功率頻譜的分佈,以及相空間軌跡和延遲時間序列所構成的像空間重構等方法。
至於微觀部份,我們可以追蹤單一微粒於波中的運動行為。我們發現粒子在運動時,會因為撞上微粒聲波的波峰而被攜帶一起前進一段距離或是被其波峰所反彈回去。大多數的粒子在波中並非進行理想之簡諧運動,而是表現出狀似週期性的渾沌運動;而粒子會在不同的波動位能阱中振盪或是躍遷至相鄰的位能阱中。再者,我們可以進一步利用程式同時追蹤所有於波中的粒子,以求得其全體粒子的速度分佈於不同區域中的結果。並且,我們提出一個在移動座標中的洗衣板位能模型,用以解釋上述所觀察到的現象。
除了聲波外,微粒電漿系統也可以產生各種非線性波動。所以在實驗的另一部份,我們利用相同的方法以研究脈衝雷射蒸熔微粒所誘發之微粒電漿微泡(微粒空穴)。電漿微泡可視為一局域化並垂直向下移動的超音速微粒密度波。因此,我們可以進一步的研究當此波穿越微粒聲波時,其所衍生的微粒尾跡場等有趣現象。
摘要(英) Dust acoustic wave (DAW) can be self excited at low pressure in the dusty plasma liquid due to some instabilities. Particle motions are directly observed and analyzed in DAW by a high speed micro image system with suitable illumination. We investigate their interactions and dynamics as a connection between macroscopic and microscopic pictures of the longitudinal wave. Various instabilities and collective behaviors can be self generated, such as DAW, or driven externally such as plasma bubble. In experiments, we can measure the global behaviors of the wave including spatiotemporal evolution of the particle number density, the spatial distribution of the power spectrum, phase space portrait, etc. In microscopic viewpoint, individual particle trajectories are traced in DAW to get its displacement and velocity. It is found that when the particle colliding the wave crest, it may be carried by the wave front and travels together for a short time or it may be repelled by the wave front and turns back. Most particles behave as long time aperiodic or quasi periodic chaotic motion instead of the simple harmonic motion. Particles oscillate in their potential wells may have opportunity to jump to nearby potential wells as the hopping motion. Furthermore, all particle trajectories are traced at the same time to study the velocity distribution of the particles in the wave. In another part of the experiment, the same methods are used to observe the spatiotemporal evolution and particle dynamics for pulsed laser ablation induced plasma bubble, i.e., spherical dust cavity. The collapsing plasma bubble can be considered as a downward propagating supersonic dust shock wave. Consequently, we further investigate some interesting phenomena such as the wave-bubble interactions and the induced dust wake field behind the bubble when plasma bubble traveling through DAW.
關鍵字(中) ★ 非高斯分佈
★ 波動
★ 微粒電漿
★ 動力學
★ 電漿微泡
★ 微粒聲波
關鍵字(英) ★ dynamics
★ dusty plasma
★ dust acoustic wave
★ Gaussian
★ wave
★ plasma bubble
論文目次 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background and Theory. . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . 4
2.1 Radio Frequency Glow Discharge Plasma . . . . . . . . . . . . . . . .. . .4
2.2 Dusty Plasma Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2.1 The Formation of Dusty Plasm . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2.2 Dynamics of Dust Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.3 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3.1 Instabilities in Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3.2 Instabilities in Glow Discharge Plasma . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Instabilities in Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.4 Waves in Dusty Plasma . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .12
2.4.1 Classification of Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.4.2 Dust Acoustic Wave (DAW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.5 Models and Dynamics of Particles in the Wave . . . . . . . . . . . . . .15
2.5.1 Particle Dynamics in DAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Particles in the Potential well . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.5.3 Non-Gaussian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.6 The Plasma Bubble in Dusty Plasma Liquid . . . . . . . . . . . . . . . . 18
2.6.1 Formation of the Plasma Bubble . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Characteristics of the Plasma Bubble . . . . . . . . . . . . . . . . . . . .19
3 Experimental Methods . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .21
3.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
4 Result and Discussion. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . .25
4.1 Dust Acoustic Wave (DAW) Formation . . . . . . . . . . . . . . . . . . . . 25
4.2 Spatiotemporal Evolution of the Wave . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Regular DAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Chaotic DAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Advanced analysis of DAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
4.3 Particle Dynamics in the Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
4.3.1 Phase Space Portraits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Particle Velocity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Wave-particle interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.1 Interactions for the Wave and Particles . . . . . . . . . . . . . . . . . . . .50
4.4.2 The Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 56
4.5 DAW and Plasma Bubble Interactions . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 Spatiotemporal Evolution of the Plasma Bubble . . . . . . . . . . . . .58
4.5.2 Plasma Bubble across DAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
5 Conclusion . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . .66
Bibliography . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . 68
參考文獻 [1] L. Spitzer, Astrophys. J. 93, 196 (1941)
[2] C.K. Goertz, Rev. Geophys. 27, 271 (1989)
[3] P.K. Shukla, Phys. Plasmas 8, 1791 (2001)
[4] H. Ikezi, Phys. Fluids 29, 1764 (1986)
[5] P.K. Shukla and A.A. Mamun, Introduction to Dusty Plasma Physics (IOP Publishing Ltd 2002)
[6] N.N. Rao et al., Planet. Space Sci. 38, 543 (1989)
[7] J.H. Chu and Lin I, Phys. Rev. Lett. 72, 4009(1994)
[8] J.H. Chu, J.B. Du and Lin I, J. Phys. D 27 (1994) 293-400
[9] H.Y. Chu et al., Phys. Rev. Lett. 90, 075004 (2003)
[10] H.Y. Chu, C.T. Liao, and Lin I, Appl. Phys. Lett. 89, 101503 (2006).
[11] U. Frisch, Turbulence the legacy of A.N. Kolmogorov (New York Cambridge University Press 1995)
[12] V.E. Zakharov et al., Kolmogorov spectra of turbulence I wave turbulence (Springer-Verlag c1992)
[13] R.L. Mwelino et al., phys. plasma 5, 1607 (1998)
[14] P.K. Shukla and A.A. Mamun, New J. phys. 5 (2003) 17.1-17.37
[15] A.V Ivlev and G. Norfill, Phys. Rev. E 63, 026412 (2001) 68
[16] P.K. Kaw, Phys. Plasmas 8, 1870 (2001)
[17] B.S. Xie and M.Y. Yu, Phys. Rev. E 62, 8501 (2000)
[18] J.M. Liu and L. I ,Phys. Rev. E 62, 5571 (2000)
[19] V. Nosenko et al., Phys. Rev. Lett. 92, 085001 (2004)
[20] S. Nunomura et al., Phys. Rev. Lett. 83, 1970 (1999)
[21] F.F. Chen, Introduction to Plasma Physics and Controlled fusion (Plenum Press 1984)
[22] Y.P. Raizer, Gas Discharge Physics (Springer-Verlag 1991)
[23] B. Chapman, Glow Discharge Process, (Wiely Interscience 1980)
[24] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiely-Interscience 2005)
[25] Y.P. Raizer et al., Radio-Frequency Capacitive Discharges (CRC Press 1995)
[26] Noah Hershkowitz, Phys. Plasma 12, 055502 (2005)
[27] E.B. Tomme et al., Phys. Rev. Lett. 85, 2518 (2000)
[28] A. Garscadden et al., Plasma Sources Sci. Technol. 3, 239 (1994)
[29] S. Hamaguchi and R.T. Farouki, Phys. Rev. E 49, 4430 (1994)
[30] J.E. Daugherty and D.B. Graves, J. Appl. Phys. 78, 2279 (1995)
[31] T. Nitter, Plasma Sources Sci. Technol. 5, 93 (1996)
[32] F. Melandso and J. Goree, J. Vac. Sci. Technol. A 14, 511 (1996)
[33] G.A. Hebner and M.E. Riley, et al., Phys. Rev. E 68, 046401 (2003)
[34] L. Chen, Waves and Instabilities in Plasmas,(Singapore Teaneck 1987)
[35] P. Shukla and G. Morfill, Phys. Lett. A 216, 153 (1996)
[36] N. D’Angelo, Phys. Plasmas 3, 3422 (1997) 69
[37] D. Samsonov and J. Goree, Phys. Rev. E 59, 1047 (1999)
[38] Barnes et al., Phys. Rev. Lett. 68, 313 (1992)
[39] J.B. pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996)
[40] A. Barkan et al., Phys. Plasmas 2, 3563 (1995)
[41] V.E. Fortov et al., Phys. Plasmas, 10, 1199 (2003)
[42] M. Rosenberg, Planet. Space Sci. 41, 229 (1993)
[43] F. Verheest, Plasma Phys. Control. Fusion 41 A445 (1999)
[44] D. Winske et al., Geophys. Res. Lett. 22, 2069 (1995)
[45] O. Havnes et al., J. Geophys. Res. A 92, 2281 (1987)
[46] N. D’Angelo, Phys. Plasmas 5 3155 (1998)
[47] V.E. Fortov et al., Physics Reports 421, 1-103 (2005)
[48] E. Thomas, Jr. and J. Williams, Phys. Plasmas 13, 055702 (2006)
[49] E. Thomas, Jr. and R.L. Merlino, IEEE Trans. Plasma Sci., 29, 0093-3813 (2001)
[50] E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)
[51] L. Machura et al., Phys. Rev. Lett. 98, 040601 (2007)
[52] J.L. Mateos, Phys. Rev. Lett. 84, 258 (2000)
[53] K. Lindenberg, Phys. Rev. Lett. 98, 020602 (2007)
[54] A. Rahman, Phys. Rev. 136, A405 (1964)
[55] M.R. Collier, Advances in Space Research 33, 2108-2112 (2004)
[56] M.P. Leubner, Phys. Plasmas, 11 1308 (2004)
[57] C. Tsallis, Physica A 221 (1995) 277-290
[58] M.A. Raadu, IEEE Trans. on Plasma Sci., 29, vol. 29, 0093-3813 (2001)
[59] M.A. Sarwar et al., Phys. Plasmas 13, 072107 (2006)
[60] M.A. Sarwara and A.M. Mirza Phys. Plasmas 12, 062108 (2005)
[61] N. Rubaba et al., Phys. Plasmas 13, 112104 (2006)
[62] A.D. Edens and T. Ditmire, Phys. Rev. Lett. 95, 244503 (2005)
[63] S.S. Harilal et al., J. Appl. Phys. 93, 2380 (2003)
[64] K. Avinash et al., Phys. Rev. Lett. 90, 075001 (2003)
[65] J. Goree et al., Phys. Rev. E 59, 7055 (1999)
[66] D. Samsonov and J. Goree, Phys. Rev. E 59, 1047 (1999)
[67] M. Rafffel et al., Particle image velocimetry A Practical Guide(Spring-Verlag 1998)
[68] M. Campbell et al., Optics and Laser Technology 32 629 (2000)
[69] J Westerweel, Meas. Sci. Technol. 8 1379(1997)
[70] D B Hann and C A Greated, Meas. Sci. Technol. 8 1517 (1997)
[71] L. Gil et al., Phys. Rev. A 41, 1138 (1990)
[72] D.A. Egolf and H.S. Greenside, Phys. Rev. Lett. 74, 1751 (1995)
指導教授 伊林(Lin I) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明