博碩士論文 104521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.144.102.156
姓名 謝文憲(Wen-Hsien Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 強健系統的穩定度分析與控制器設計
(Stability Analysis and Controller Design for Robust Systems)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係研究系統之穩定性分析及穩定化控制設計,研究的範疇包含連續時間與離散時間兩大系統,系統中含有區間不確定量因子,是本文的主要探討。針對穩定性分析問題,而推導出新的條件,基於此條件,搭配狀態迴授來設計控制器,運用線性規劃方法來尋找控制器參數,便可應用於控制系統的穩定度設計上。最後以實際的系統為例,對此系統設計控制器,討論補償前與補償後系統性能的差異,經由模擬結果顯示,所設計的控制器是有效且容易的。
摘要(英) This thesis is concerned with stability and stabilization of interval systems Both continuous-time and discrete-time are discussed. For stability analysis and stabilization problems of those systems, we derive some new conditions. Then based on these conditions, a linear programming method is applied to design controllers. Several examples, including compartmental systems and Leslie systems are given to demonstrate the effectiveness and applicability of the proposed methods.
關鍵字(中) ★ 強健系統 關鍵字(英) ★ Robust
論文目次 目錄
摘要........................................................................................................................I
Abstract.................................................................................................................II
致謝.....................................................................................................................III
目錄.....................................................................................................................IV
圖目錄..................................................................................................................V
第一章 緒論.......................................................................................................1
1.1 研究動機................................................................................................1
1.2 論文架構................................................................................................1
第二章 符號與定理...........................................................................................3
2.1符號.........................................................................................................3
2.2Gershgorin圓定理...................................................................................3
2.3漸進穩定性.............................................................................................5
2.4線性規劃.................................................................................................6
2.5結論.........................................................................................................6
第三章 連續時間區間系統穩定度分析與控制器設計...................................7
3.1連續時間區間系統穩定度分析.............................................................7
3.2連續時間區間系統控制器設計..............................................................8
3.3舉例說明.................................................................................................9
3.4結論.......................................................................................................15
第四章 離散時間區間系統穩定度分析與控制器設計.................................16
4.1離散時間區間系統穩定度分析...........................................................16
4.2離散時間區間系統控制器設計...........................................................17
4.3舉例說明...............................................................................................18
4.4結論.......................................................................................................25
第五章 分區系統與Leslie系統的穩定性問題...............................................26
5.1分區系統的穩定性問題........................................................................26
5.1.1分區系統的概述...................................................................26
5.1.2分區系統的穩定性...............................................................27
5.2Leslie系統的穩定性問題.....................................................................30
5.2.1Leslie系統的概述................................................................30
5.2.2Leslie系統的穩定性............................................................31
5.4結論.......................................................................................................34
第六章 結論.....................................................................................................35
參考文獻.............................................................................................................36
參考文獻
[1] A. Berman, M. Neumann, and R. J. Stern, Nonnegative Matrices in Dynamic Systems, New York: Wiley, 1989.
[2] L. Farina and S. Rinaldi, Positive Linear System: Theory and Application, New York: Wiley, 2000.
[3] T. Kaczorek, 1-D and 2-D Systems, Berlin: Springer-Verlag, 2002.
[4] D. G. Luenberger, Introduction to Dynamic Systems, New York: Wiley, 1979.
[5] H. Minc, Nonnegative Matrices, New York: Wiley, 1987.
[6] P. H. Leslie, “On the use of matrices in certain population mathematics,” Biomerriko, vol. 33, pp. 183-212, 1945.
[7] P. D. Berk, J. R. Bloomer, and R. B. Howe, “Constitutional hepatic dysfunction (Gilbert’s syndrome),” The American Journal of Medicine, vol49, no. 3, pp.296-305, 1970.
[8] J. A. Jacquez, Compartmental Analysis in Biology and Medicine, Ann Arbor, MI: Univ. Michigan Press, 1985.
[9] H. Caswell, Matrix Population Model: Construction, Analysis and Interpretation, Sunderland, MA: Sinauer Assoc., 2001.
[10] L. Benvenuti and L. Farina, “Positive and compartmental systems,” IEEE Transactions on Automatic Control, vol.47, no.2, pp. 370-373, 2002.
[11] H. K. Khalil, Nonlinear Systems, third ed., Upper Saddle River, NJ: Prentice-Hall, Inc., 2002.
[12] M. Vidyasagar, Nonlinear Systems Analysis, New Jersey: Prentice-Hall, Inc., 2000.
[13] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.
[14] T. Kaczorek, “Stabilization of positive linear systems,” Proceedings of the 37th IEEE Conference on Decision and Control, pp. 620-621, 1998.
[15] T. Kaczorek, “Stabilization of positive linear system by state-feedback,” Pomiary, Automatyka, Kontrola, vol. 3, pp. 2-5, 1999.
[16] P. D. Leenheer and D. Aeyels, “Stabilization of positive linear system,” Systems & Control Letters, vol. 44, no.4, pp. 259-271, 2001.
[17] H. Gao, J. Lam, C. Wang, and S. Xu, “Control for stability and positivity: Equivalent conditions and computation,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 52, no. 9, pp. 540-544, Sep. 2005.
[18] M. A. Rami and F. Tadeo, “Controller synthesis for positive linear systems with bounded controls,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 54, no. 2, pp. 151-155, 2007.
[19] B. Roszak and E. J. Davison, “Necessary and sufficient conditions for stabilizability of positive LTI systems,” Systems & Control Letters, vol. 58, pp. 474-481, 2009.
[20] Z. Shu, J. Lam, H. Gao, B. Du, and L. Wu, “Positive observers and dynamic output-feedback controllers for interval positive linear systems,” IEEE Transactions on Circuits and Systems Ⅰ, vol. 55, no. 10, pp. 3209-3222, Nov. 2008.
[21] P. Ling, J. Lam, and Z. Shu, “Positive observers for Positive interval linear discrete-time delay systems,” Proceedings of 48th IEEE Conference on Decision Control, pp. 6107-6112, Shanghai, P.R., China, 2009.
[22] X. Liu, “Stability analysis of switched positive systems: A switched linear copositive lyapunov function method,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 56, no. 5, pp. 414-418, 2009.
[23] O. Mason and R. Shorten, “Some results on the stability of positive switched linear systems,” Proceedings of 43rd Conference on Decision and Control, 2004, pp. 4601-4606.
[24] O. Mason and R. Shorten, “The geometry of convex cones associated with the Lyapunov inequality and the common Lyapunov function problem,” Electronic Journal of Linear Algebra, vol. 12, pp. 42-63, 2005.
[25] O. Mason and R. Shorten, “Quadratic and copositive Lyapunov functions and the stability of positive switched linear systems,” Proceedings of 2007 American Control Conference, pp. 657-662, 2007.
[26] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1346-1349, 2007.
[27] F. Knorn, O. Mason, and R. Shorten, “On Linear Co-positive Lyapunov Functions for Sets of Linear Positive Systems,” Automatica, vol. 45, no. 8, pp. 1943-1947, 2009.
[28] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceedings of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[29] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceedings of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[30] X. Liu, L. Wang, W. Yu, and S. Zhong, “Constrained control of positive discrete-time systems with delays,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 55, no. 2, pp. 193-197, 2008.
[31] X. Liu, “Constrained control of positive systems with delays,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1596-1600, 2009.
[32] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceeding of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[33] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceeding of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[34] L. Caccetta, L. R. Foulds, and V. G. Rumchev, “A positive linear discrete-time model of capacity planning and its controllability properties,” Mathematical and Computer Modelling, vol. 40, no. 1-2, pp. 217-226, 2004.
[35] M. Busłowicz and T. Kaczorek, “Robust stability of positive discrete-time interval systems with time-delays,” Bulletin of The Polish Academy of Sciences: Technical Sciences, vol.52, no.2, 2004.
[36] N. Dautrebande and G. Bastin, “Positive linear observers for positive linear systems,” Proceeding of 1999 Europe Control Conference, 1999.
[37] L. Benvenuti and L. Farina, “Eigenvalue regions for positive systems,” Systems & Control Letters, vol. 51, pp. 325-330, 2004.
[38] J. Back and A. Astolfi, “Positive linear observers for positive linear systems: A Sylvester equation approach,” Proceeding of 2006 American Control Conference, pp. 4037-4042, Minneapolis, Minnesota, USA, 2006.
[39] J. Feng, J. Lam, P. Li, and Z. Shu, “Decay rate constrained stabilization of positive systems using static output feedback,” International Journal of Robust and Nonlinear Control, vol. 83, no. 3, pp. 575-584, 2010.
[40] T. Coleman, M. Branch, and A. Grace, Optimization Toolbox for Use with Matlab, Natick, MA: The Math Works Inc., 1999.
[41] Yan Li; Peng Zhang; Lingyu Ren; Taofeek Orekan,” A Geršgorin theory for robust microgrid stability analysis,” 2016 IEEE Power and Energy Society General Meeting (PESGM).
[42] Paul F. Curran,” On a variation of the Gershgorin circle theorem with applications to stability theory,” IET Irish Signals and Systems Conference (ISSC 2009).
指導教授 莊堯棠 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明