博碩士論文 942202005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.188.203.142
姓名 蘇致瑋(Chih-wei Su)  查詢紙本館藏   畢業系所 物理學系
論文名稱 以希爾伯-黃轉換為基礎的去噪音方法以及從腦電儀資料辨識電流源的應用
(A Denoising Method based on the Hilbert-Huang Transform and an application to Current Source Identification from EEG Data)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究
★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討★ 以Z曲線分析法探索人類基因體之辨識
★ 以個人電腦叢集平行運算模擬蛋白質結構★ 各類演算法對DNA序列的辨讀與ORF之搜尋
★ 細菌基因體隨機性的統計分析★ DNA序列的不同相位上辨識與搜尋基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們提出一個方法能夠減少或是去除摻雜在資料中的噪音,例如一個
時間序列。這個方法是根據Hilbert-Huang Transform (HHT)的一部
分,實驗模分解(Empirical Mode Decomposition, EMD)。分解資料後,模 (modes) 可被配分為噪音及訊號兩個集,並計算其標準訊噪比
(Signal-to-Noise Ratio, SNR)。透過數值實驗,我們改變不同的噪音強度干擾測試訊號,研究計算的訊噪比和真正資料的訊噪比的關係,發展一個尋找最佳配分方式的演算法。實驗結果顯示,在非病理學上的條件下,當資料的訊噪比大於-10 分貝(dB)時,這個演算方法能夠可靠的估計資料的訊噪比,並且對於具有相當複雜性的訊號工作良好。
我們將這個去除噪音的演算法應用到所謂的電流源密度(Current
Source-Density, CSD)方法上。電流源密度方法常用於從腦電儀
(Electroencephalogram, EEG) 資料中建構電流源結構上。這個方法需要利用二次微分近似式計算以等空間間距記錄的離散資料。對於每個空間點,都有一個時間序列資料。雖然能夠依靠泰勒展開式(Taylor
Expansion),利用正確的數學過程來提高二次微分精確度,但面對遭
受噪音干擾的資料卻會失敗。因此有個廣泛應用的去噪音方法,即在
計算空間二次微分之前先在空間上平滑資料。然而,有個不幸的缺點
是,在空間上平均會造成過度平滑資料的訊息。此外,這個方法也欠
缺計算二次微分的精確度。我們證明,利用我們的方法在時間方向上
去除腦電儀資料的噪音,我們能夠:(1) 估計出這組腦電儀資料的
訊噪比約為35分貝;(2) 去除腦電儀資料的噪音,再計算空間二次
微分,這結果將會在泰勒展開式中收斂;(3) 證明在空間上平滑資
料不但是不必要,還會定性上的改變結果。
摘要(英) We present a method for reducing or removing noise in a data set, such as a times series. The method is based on the empirical mode decomposition (EMD) of a data set, which is itself a by-product of the Hilbert-Huang transform. After decomposition the modes are partitioned into a signal set
and a noise set and the standard signal-to-noise ratio (SNR) is computed. By experimenting on sets of data composed of signal and noises of a variety of intensities and studying the behavior of computed SNR in relation to the actual SNR, an algorithm for finding the best partition is derived. It
is shown that under conditions that are not pathological, the algorithm is capable of giving a reliable estimation of the SNR and works well for signals of considerable complexity, provided the true SNR is greater than -10.
We apply the denoising algorithm to the so-called current source-density (CSD) method used in the construction of current source from electroencephalogram (EEG) data. The method requires a discrete form of the second derivative to be taken on data simultaneously collected at a small set
of equally spaced points. At each point the data is a time series. Although there is a mathematically correct procedure for taking increasingly accurate discrete second derivative based on Taylor’s expansion, the procedure breaks down when the data is contaminated with noise. This has led to the wide-spread practice of spatially smoothing the data — for noise removal — before computing the derivative. However, this method has the unfortunate drawback of the act of spatial smoothing itself compromising the very meaning
of the second derivative. The method also lacks a provision for accuracy estimation. We show that by applying our denoising method to the times series of the EEG data, we are able to: (1) Estimate the SNR in the data to be of the order of 35; (2) Denoise the EEG and obtain second spatial
derivatives of the data that converge in the Taylor expansion; (3) Show that spatial smoothing of the data is not only unnecessary, but also that when it is done, qualitatively alters the results.
關鍵字(中) ★ 希爾伯-黃轉換
★ 實驗模分解
★ 電流源
★ 腦電儀資料
★ 去噪音
關鍵字(英) ★ Hilbert-Huang Transform
★ EEG
★ Empirical Mode Decomposition
★ Denoising
★ Current Source
論文目次 1 Introduction 1
2 Current Source-Density Method 5
2.1 Physical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Practical Formulas . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Some Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 A Method for Approximating Second-Order Derivatives Based
on Taylor Expansion 8
3.1 Method based on Taylor Expansion . . . . . . . . . . . . . . . 8
3.2 Numerical Result and Analysis . . . . . . . . . . . . . . . . . 10
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Denoising Method 14
4.1 Background of The Empirical Mode Decomposition . . . . . . 14
4.2 Denoising Methodology . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 Characteristics of Gaussian white noise . . . . . . . . . 17
4.3.2 The distibution of Rk for a simple test signal . . . . . . 17
4.3.3 The distibution of Rk for a complicated test signal . . . 21
4.4 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Method for Current Source Identification 27
5.1 The Improved CSD Method . . . . . . . . . . . . . . . . . . . 27
5.2 Study of A Test Signal . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . 29
5.3 Short Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Example: Application to EEG Data of the Rat’s Primary
Somatosensory Cortex 35
6.1 Background of The Experiment . . . . . . . . . . . . . . . . . 35
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Result And Analysis . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Discussion and Comparison . . . . . . . . . . . . . . . . . . . 39
7 Conclusions 42
Bibliography 44
A Derivation of CSD Equation 47
參考文獻 Berg, R. W., Friedman, B., Schroeder, L. F., and Kleinfeld, D. (2005). Activation
of nucleus basalis facilitates cortical control of a brain stem motor
program. J Neurophysiol., 94:699–711.
Bray, M. A. and Wikswo, J. P. (2002). Considerations in phase plane analysis
for nonstationary reentrant cardiac behavior. Physical Review E,
65:051902.
Cummings, D. A. T., Irizarry, R. A., Huang, N. E., Endy, T. P., Nisalak,
A., Ungchusak, K., and Burke, D. S. (2004). Travelling waves in the
occurrence of dengue haemorrhagic fever in thailand. Nature, 427:344–
347.
Flandrin, P., IEEE, F., Rilling, G., and Goncalves, P. (2004). Empirical
mode decomposition as a filter bank. Appl. Stochastic Models Bus. Ind.,
11:112–114.
Freeman, J. A. and Nicholson, C. (1975a). Experimental optimization of
current source-density technique for anuran cerebellum. Journal of Neurophysiology,
38:369–382.
Freeman, J. A. and Nicholson, C. (1975b). Theory of current source-density
analysis and determination of conductivity tensor for anuran cerebellum.
Journal of Neurophysiology, 38:356–368.
Galambos, R., and Hillyard, S. (1981). Electrophysiological approaches to
human cognitive processing. Neurosci. Res. Program Bull., 20:145–265.
Gholmieh, G., Soussou, W., Hana, M., Ahuja, A., Hsiao, M. C., Songa, D.,
Jr., A. R. T., and Berger, T. W. (2006). Custom-designed high-density
conformal planar multielectrode arrays for brain slice electrophysiology.
J. Neurosci. Methods, 152:116–129.
Grossmann, A. and Morlet, J. (1984). Decomposition of hardy functions into
square integrable wavelets of constant shape. SIAM J. Math. Analysis,
15:723–736.
Halgren, E., Wang, C., Schomer, D. L., Knake, S., Marinkovic, K., Wu, J.,
and Ulbert, I. (2006). Processing stages underlying word recognition in
the anteroventral temporal lobe. Neuroimage, 30:1401–1413.
Huang, N. E. and Shen, S. S. P. (2005). Hilbert-Huang Transform and Its
Applications. World Scientific, Singapore.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen,
N. C., Tung, C. C., and Liu, H. H. (1998). The empirical mode decomposition
and the hilbert spectrum for nonlinear and non-stationary time
series analysis. Proc. R. Soc. Lond. A, 454:903–995.
Huang, N. E., Wu, M. L., Qu, W., Long, S. R., and Shen, S. S. P. (2003).
Applications of hilbertvhuang transform to non-stationary financial time
series analysis. Appl. Stochastic Models Bus. Ind., 19:245–268.
Jones, M., Hewson-Stoate, N., Martindale, J., Redgrave, P., and Mayhew, J.
(2004). Nonlinear coupling of neural activity and cbf in rodent barrel
cortex. NeuroImage, 22:956–965.
Karwoski, C. J., Xu, X., and Yu, H. (1996). Current-source density analysis
of the electroretinogram of the frog: Methodological issues and origin of
components. J. Opt. Soc. Am. A, 13:549–556.
Knuth, K. H., Shah, A. S., Truccolo, W. A., Ding, M., Bressler, S. L., and
Schroeder, C. E. (2006). Differentially variable component analysis:
Identifying multiple evoked components using trial-to-trial variability.
J Neurophysiol., 95:3257–3276.
Kunkler, P. E., Hulse, R. E., Schmitt, M. W., Nicholson, C., and Kraig, R. P.
(2005). Optical current source density analysis in hippocampal organotypic
culture shows that spreading depression occurs with uniquely
reversing currents. J. Neuroscience, 25:3952–3961.
Leung, L. S. and Peloquin, P. (2006). Gabab receptors inhibit backpropagating
dendritic spikes in hippocampal ca1 pyramidal cells in vivo.
Hippocampus, 16:388–407.
Liang, H., Bressler, S. L., Buffalo, E. A., Desimone, R., and Fries, P. (2005).
Empirical mode decomposition of field potentials from macaque v4 in
visual spatial attention. Biol. Cybern., 92:380–392.
Mitzdorf, U. (1985). Current source-density method and application in cat
cerebral cortex: Investigation of evoked potentials and eeg phenomena.
Physiological Reviews, 65:369–382.
Peng, Z. K., Tse, P. W., and Chu, F. L. (2005). An improved hilbert huang
transform and its application in vibration signal analysis. J. Sound &
Vibration, 286:187–205.
Quairiaux, C., Armstrong-James, M., and Welker, E. (2007). Modified sensory
processing in the barrel cortex of the adult mouse after chronic
whisker stimulation. J Neurophysiol., 97:2130–2147.
Schroeder, C. E., Lindsley, R. W., Specht, C., Marcovici, A., Smiley, J. F.,
and Javitt, D. C. (2001). Somatosensory input to auditory association
cortex in the macaque monkey. J Neurophysiol., 85:1322–1327.
Sirota, A., Csicsvari, J., Buhl, D., and Buzsaki, G. (2003). Communication
between neocortex and hippocampus during sleep in rodents. Proc. Nat.
Acad. Sci. (USA), 100:2065–2069.
Steinschneider, M., Volkov, I. O., Fishman, Y. I., Oya, H., Arezzo, J. C.,
and III, M. A. H. (2005). Intracortical responses in human and monkey
primary auditory cortex support a temporal processing mechanism for
encoding of the voice onset time honetic parameter. Cerebral Cortex,
15:170–186.
Sun, J. J., Yang, J. W., and Shyu, B. C. (2006). Current source density
analysis of laser hear-evoked intra-cortical field potentials in the primary
somatosensory cortex of rats. Neuroscience, 140:1321–1336.
Wu, Z. and Huang, N. E. (2004). A study of the characteristics of white noise
using the empirical mode decomposition method. Proc. R. Soc. Lond.
A, 460:1597–1611.
指導教授 李弘謙(Hoong-chien Lee) 審核日期 2007-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明