參考文獻 |
[1] Alexander J., Gardner R.,Jone C. K. R. T., A topological invariant arising in the stability
analysis of travelling waves, J. Reine Angew. Math., 410 (1990), pp. 167-212.
[2] Alt W., Biased Random Walk Models for Chemotaxis and Related Diusion Approximations,
J. Math. Biology 9, 147-177 (1980)
[3] Biler P., Global Solutions to Some Parabolic-Elliptic Ssystems of Chemotaxi, Adv. Math.
Sci. Appl. 9 (1999), 347-359.
[4] Boon, J.P., Herpigny, B., Model for chemotactic bacterial bands, Bull. Math. Biol. 48(1),
1-19 (1986)
[5] Bose K., Cox T., Silvestri S., Varin P., Invasion Fronts and Pattern Formation in a Model
of Chemotaxis in One and Two Dimensions, SIAM Undergrad. Res. Online. 6, 228-245
(2013)
[6] Byrne, H.M., Owen, M.R.: A new interpretation of the KellerVSegel model based on
multiphase modelling. J. Math. Biol. 49, 604-626 (2004)
[7] Chang C.C., Chen Y.S., Hong J. M., Huang B.C., Existence and Instability of Traveling
Pulses of Generalized Keller-Segel Equations with Nonlinear Chemical Gradients and
Small Diusions,preprint
[8] Chen G.-Q., Slemrod M., Wang D. , Vanishing viscosity method for transonic
ow, Arch.
Rational Mech. Anal., 189 (2008), pp. 159-188.
[9] Chou S.-W., Hong J.M., Su Y.-C., An extension of Glimm′s method to the gas dynamical
model of transonic
ows, Nonlinearity, 26 (2013), pp. 1581-1597.
[10] Chou S.-W., Hong J.M., Su Y.-C., Global entropy solutions of the general nonlinear
hyperbolic balance laws with time-evolution
ux and source, Methods Appl. Anal., 19
(2012), pp. 43-76.
[11] Chou S.-W., Hong J.M., Su Y.-C., The initial-boundary value problem of hyperbolic
integro-dierential systems of nonlinear balance laws, Nonlinear Anal., 75 (2012), pp.
5933{5960.
[12] Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis
systems in high space dimensions. Milan J. Math. 72, 1-28 (2004)
67
[13] Dafermos C.M., Hsiao L., Hyperbolic systems of balance laws with inhomogeneity and
dissipation, Indiana Univ. Math. J., 31 (1982), pp. 471-491.
[14] Dkhil, F., Singular limit of a degenerate chemotaxis-sher equation., Hiroshima-
Math. J. 34, 101-115(2004)
[15] Eberl, H.J., Parker, D.F., Loosdrecht, M.C.M.van. : A new deterministic spatio-temporal
continuum model for biolm development. J. Theor. Med. 3(3), 161-175 (2001)
[16] Fenichel N., Persistence and smoothness of invariant manifolds and
ows, Indiana Univ.
Math. J. 21 (1971/1972), pp. 193-226.
[17] Fenichel N., Geometric singular perturbation theory for ordinary dierential equations,
J. Di. Eqns. 31 (1979), no. 1, pp. 53-98.
[18] Fan J., Zhao K., Blow up criterion for a hyperbolicVparabolic system arising from chemotaxis,
J. Math. Anal. Appl. 394 (2012) 687-695
[19] Fatkullin I., A study of blow-ups in the Keller-Segel model of chemotaxis, Nonlinearity
26 (2013) 81-94
[20] Ford, R.M., Lauenburger, D.A., Measurement of bacterial random motility and chemotaxis
coecients: II. application of single cell based mathematical model. Biotechnol.
Bioeng. 37, 661-672 (1991)
[21] Gajewski H., Zacharia K., Global Behaviour of a Reaction - Diusion System Modelling
Chemotaxis, Math. Nachr. 195 (1998), 77-114
[22] Glimm J. , Solutions in the large for nonlinear hyperbolic systems of equations, Commun.
Pure Appl. Math., 18 (1965), pp. 697-715.
[23] Goatin P., LeFloch P.G. , The Riemann problem for a class of resonant nonlinear systems
of balance laws, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), pp. 881-902.
[24] Goodman J.B. , Initial boundary value problems for hyperbolic systems of conservation
laws, Thesis (Ph. D.){Stanford University., (1983).
[25] J. Groah, J. Smoller, B. Temple, Shock Wave Interactions in General Relativity, Monographs
in Mathematics, Springer, Berlin, New York, 2007.
[26] Guo H., Zheng S., Liang B., Asymptotic behaviour of solutions to the KellerVSegel model
for chemotaxis with prevention of overcrowding, Nonlinearity 26 (2013) 405-416
[27] Henry D., Geometric theory of semilinear parabolic equations, in Lecture Notes in
Mathematics," Vol. 840, Springer-Verlag, New York rBerlin, 1981.
[28] Henry, M., Hilhorst, D., Schatzle, R., Convergence to a viscocity solution for an
advectionreaction-diusion equation arising from a chemotaxis-growth model., Hiroshima
Math. J. 29, 591-630(1999)
68
[29] Herrero M. A., Velazquez J. J. L., Chemotactic collapse for the Keller-Segel model, J.
Math. Biol. (1996) 35: 177-194
[30] Herrero M. A., Velazquez J. J. L., Singularity patterns in a chemotaxis model, Math.
Ann. 306,583-623 (1996)
[31] Hillen T., Potapov Alex, The one-dimensional chemotaxis model: global existence and
asymptotic prole, Math. Meth. Appl. Sci. 2004; 27:1783-1801
[32] Hillen T., Painter K. J., A users guide to PDE models for chemotaxis, J. Math. Biol.
[33] Hillen T., Painter K. J., Global Existence for a Parabolic Chemotaxis Model with Prevention
of Overcrowding, Adv. in Appl. Math., 26, 280-301 (2001)
[34] Hillen T., Steven A., Hyperbolic models for chemotaxis in 1-D, Nonlinear Analysis: Real
World Applications 1 (2000) 409-433
[35] Hillen T., Painter K., Schmeiser C., Global Existence for Chemotaxi with Finte Sampling
Radius, Discrete and Continuous Dynamical Systems-Series B Vol.7, No.1, Jan. 2007
[36] Hofer, T., Sherratt, J.A., Maini, P.K., Dictyostelium discoideum: cellular selforganisation
in an excitable biological medium, Proc. R. Soc. Lond. B. 259, 249-257
(1995)
[37] Hong J.M., An extension of Glimm′s method to inhomogeneous strictly hyperbolic systems
of conservation laws by weaker than weak" solutions of the Riemann problem, J.
Di. Equ., 222 (2006), pp. 515-549.
[38] Hong J.M., LeFloch P.G., A version of Glimm method based on generalized Riemann
problems, J. Portugal Math., 64 (2007), pp. 199-236.
[39] Hong J.M., Temple B., The generic solution of the Riemann problem in a neighborhood
of a point of resonance for systems of nonlinear balance laws, Methods Appl. Anal., 10
(2003), pp. 279-294.
[40] Hong J.M., Temple B., A bound on the total variation of the conserved quantities for
solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math., 64 (2004),
pp. 819-857.
[41] Hong J.M., Su Y.-C., Generalized Glimm scheme to the initial-boundary value problem
of hyperbolic systems of balance laws, Nonlinear Anal., 72 (2010), pp. 635-650.
[42] Horstmann, D., Lyapunov functions and L p-estimates for a class of reaction-diusion
systems. Coll. Math. 87, 113-127 (2001)
[43] Horstmann D., The nonsymmetric case of the Keller-Segel model in chemotaxis: some
recent results, Nonlinear dier. equ. appl. 8 (2001) 399-423
[44] Horstmann D., From 1970 until present: the Keller-Segel model in chemotaxis and its
consequences, I. Jahresberichte DMV 105(3), 103-165 (2003)
69
[45] Horstmann D., Stevens A., A Constructive Approach to Traveling Waves in Chemotaxis,
J. Nonlinear Sci., Vol. 14 (2004), pp. 1-25
[46] Horstmann D.,Wang G., Blow-up in a chemotaxis model without symmetry assumptions,
Euro. Jnl of Applied Mathematics (2001), vol. 12, pp. 159-177.
[47] Horstmann D., Winkler M., Boundedness vs. blow-up in a chemotaxis system, J. Dierential
Equations 215 (2005) 52-107
[48] https://en.wikipedia.org/wiki/Chemotaxis
[49] Huang B.-C., Chou S.-W., Hong J.M., Yen C.-C. , Global transonic solutions of planetary
atmospheres in hydrodynamic region-hydrodynamic escape problem due to gravity and
heat, arXiv:1511.00804 [math.AP], to appear in SIAM J. Math. Anal.
[50] Isaacson E., Temple B., Nonlinear resonance in systems of conservation laws, SIAM J.
Appl. Anal., 52 (1992), pp. 1260-1278.
[51] Isaacson E., Temple B., Convergence of the 22 Godunov method for a general resonant
nonlinear balance law, SIAM J. Appl. Anal., 55 (1995), pp. 625-640.
[52] Jin H.Y., Li J., Wang Z.A. , Asymptotic stability of traveling waves of a chemotaxis
model with singular sensitivity, J. Dierential Equations 255 (2013) 193-219
[53] Jones C.K.R.T., Geometric singular perturbation theory, Dynamical Systems (Montecatini
Terme, 1994). Lecture Notes in Math. 1609, Springer-Verlag, Berlin, 1995, pp.
44-118.
[54] Keller, E.F., Segel, L.A., Model for chemotaxis, J. Theor. Biol. 30, 225-234 (1971)
[55] Keller, E.F., Segel, L.A., Traveling bands of chemotactic bacteria: a theoretical analysis,
J. Theor. Biol. 30, 377-380 (1971)
[56] Kim, I.C., Limits of chemotaxis growth model., Nonlinear Anal. 46, 817-834 (2001)
[57] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math.Anal. Appl. 305,
566-588 (2005)
[58] Lapidus, I.R., Schiller, R., Model for the chemotactic response of a bacterial population.
Biophys, J 16(7), 779-789 (1976)
[59] Lax P.D., Hyperbolic system of conservation laws II, Commun. Pure Appl. Math., 10
(1957), pp. 537-566.
[60] Levine, H.A., Sleeman, B.D., A system of reaction diusion equations arising in the
theory of reinforced random walks, SIAM J. Appl. Math. 57, 683-730 (1997)
[61] LeFloch P.G., Entropy weak solutions to nonlinear hyperbolic systems under nonconservative
form, Commun. Part. Di. Equ., 13 (1988), pp. 669-727.
70
[62] LeFloch P.G. , Shock waves for nonlinear hyperbolic systems in nonconservative form,
Institute for Math. and its Appl., Minneapolis, Preprint, 593, 1988.
[63] LeFloch P.G., Liu T.-P., Existence theory for nonlinear hyperbolic systems in nonconservative
form, Forum Math., 5 (1993), pp. 261{280.
[64] LeFloch P.G., Raviart P.A. , Asymptotic expansion for the solution of the generalized
Riemann problem, Part 1, Ann. Inst. H. Poincare Anal. Non Lineaire, 5 (1988), pp.
179-209.
[65] Li D., Li T., Zhao K., On a Hyperbolic Parabolic System Modeling Chemotaxi, Math.
Models and Methods in Appl. Sci., Vol. 21, No. 8 (2011) 1631-1650
[66] Li D., Li T., Zhao K., Global Dynamics of a Hyperbolic-Parabolic Model Arising from
Chemotaxi, SIAM J. APPL. MATH., Vol. 72(2012), No. 1, pp. 417-443
[67] Li T., Wang Z.A., Asymptotic nonlinear stability of traveling waves to conservation laws
arising from chemotaxis, J. Dierential Equations 250 (2011) 1310-1333
[68] Li J., Xin Z., Yin H., Transonic shocks for the full compressible Euler system in a general
two-dimensional De Laval nozzle, Arch. Ration. Mech. Anal., 207 (2013), pp. 533-581.
[69] Liu T.-P., Quasilinear hyperbolic systems, Commun. Math. Phys., 68 (1979), pp. 141{
172.
[70] Liu T.-P., Nonlinear stability and instability of transonic
ows through a nozzle, Commun.
Math. Phys., 83 (1982), pp. 243-260.
[71] Liu T.-P., Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys., 28
(1987), pp. 2593-2602.
[72] Liu J., Wang Z.-A., Classical solutions and steady states of an attractionVrepulsion
chemotaxis in one dimension, Journal of Biological Dynamics Vol. 6, Suppl. 1, May 2012,
31-41
[73] Li J., Li T., Wang Z.A., Stability of traveling waves of the Keller-Segel system with
logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (14) (2014), pp. 2819-2849.
[74] Luskin M., Temple B., The existence of global weak solution to the nonlinear waterhammer
problem, Commun. Pure Appl. Math., 35 (1982), pp. 697{735.
[75] Maso G. D., LeFloch P., Murat F., Denition and weak stability of nonconservative
products, J. Math. Pure Appl., 74 (1995), pp. 483-548.
[76] Morawetz C.S., On a weak solution for a transonic
ow problem, Commun. Pure Appl.
Math., 38 (1985), pp. 797-817.
[77] Shapiro A.H., The dynamics and thermodynamics of compressible
uid
ow, vol. 1,
Ronald Press Co., New York, 1953.
71
[78] Smoller J., Shock Waves and Reaction-Diusion Equations, 2nd ed., Springer-Verlag,
Berlin, New York, 1994.
[79] Temple B., Global solution of the Cauchy problem for a class of 22 nonstrictly hyperbolic
conservation laws, Adv. Appl. Math., 3 (1982), pp. 335-375.
[80] Tsuge N., Existence of global solutions for isentropic gas
ow in a divergent nozzle with
friction, J. Math. Anal. Appl., 426 (2015), pp. 971-977.
[81] Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D., Bifurcating spatially heterogeneoussolutions
in a chemotaxis model for biological pattern generation, Bull. Math.
Biol. 53(5), 701-719(1991)
[82] Myerscough M.R., Maini P.K., Painter K.J., Pattern Formation in a Generalized Chemotactic
Model, Bulletin of Mathematical Biology (1998) 60, 1-26
[83] Naito Y., Senba T., Self-similar blow-up for a chemotaxis system in higher dimensional
domains, RIMS Kokyuroku Bessatsu B15 (2009), 87-99
[84] Nagai T., Ikeda T., Traveling waves in a chemotactic model, J. Math. Biol. 30 (1991),
pp. 169-184.
[85] Nagai T., Senba T., Yoshida K., Application of the Trudinger-Moser Inequah.ty to a
Parabolic System of Chemotaxis, Funkcialaj Ekvacioj, 40 (1997) 411-433
[86] Osaki, K., Tsujikawa, T.,Yagi, A., Mimura,M., Exponential attractor for a chemotaxisgrowth
system of equations, Nonlinear Anal. 51, 119-144 (2002)
[87] Othmer, H.G., Stevens, A., Aggregation, blowup and collapse: The ABCs of taxis in
reinforced random walks, SIAM J. Appl. Math. 57, 1044-1081 (1997)
[88] Othmer, H.G., Dunbar, S.R., Alt, W., Models of dispersal in biological systems, J. Math.
Biol. 26,263V298 (1988)
[89] Painter, K.J., Maini, P.K., Othmer, H.G., Complex spatial patterns in a hybrid chemotaxis
reaction-diusion model, J. Math. Biol. 41(4), 285-314 (2000)
[90] Painter, K.J., Maini, P.K., Othmer, H.G., Development and applications of a model for
cellular response to multiple chemotactic cues, J. Math. Biol. 41(4), 285-314 (2000)
[91] Painter, K., Hillen, T., Volume-lling and quorum-sensing in models for chemosensitive
movement, Can. Appl. Math. Quart. 10(4), 501-543 (2002)
[92] Park, H.T.,Wu, J., Rao,Y., Molecular control of neuronalmigration., Bioessays 24(9),
821-827 (2002)
[93] Patlak, C.S., Random walk with persistence and external bias, Bull. Math. Biophys. 15,
311-338 (1953)
72
[94] Patnaik P. R., Chemotactic Sensitivity of Escherichia coli to Diusion Perturbations in
Narrow Tubes, The Open Chemical Engineering Journal, 2008, 2, 35-41
[95] Rivero, M.A., Tranquillo, R.T., Buettner, H.M., Lauenburger, D.A., Transport models
for chemotactic cell populations based on individual cell behavior, Chem. Eng. Sci. 44,
1-17 (1989)
[96] Rosen G., Baloga S. , On the stability of steady propagating bands of chemotactic bacteria,
Math. Biosci. 24 (1975),pp. 273-279.
[97] Sandstede B., Stability of travelling waves, in Handbook of Dynamical Systems II: Towards
Applications, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 983-1055.
[98] Segel, L.A., Incorporation of receptor kinetics into a model for bacterial chemotaxis, J.
Theor. Biol. 57(1), 23-42 (1976)
[99] Segel, L.A., A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM
J. Appl. Math. 32, 653-665 (1977)
[100] Sherratt, J.A., Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations
as an approximation to a detailed model, Bull. Math. Biol. 56(1), 129V146 (1994)
[101] Sherratt, J.A., Sage, E.H., Murray, J.D., Chemical control of eukaryotic cell movement:
a newmodel, J. Theor. Biol. 162(1), 23-40 (1993)
[102] P. Szmolyan P., Wechselberger M., Canards in R3,J. Di. Eqns. 177 (2001), no. 2, pp.
419-453.
[103] Tyson, R., Lubkin, S.R., Murray, J.D., A minimal mechanism for bacterial pattern
formation, Proc. R. Soc. Lond. B 266, 299-304 (1999)
[104] Volpert A. I., Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical
Monographs 140, Amer. Math. Soc., Providence (1994)
[105] Wang, X., Qualitative behavior of solutions of chemotactic diusion systems: Eects of
motility and chemotaxis and dynamics., SIAM J. Math. Ana. 31, 535-560 (2000)
[106] Wang Z., Hillen T., Shock formation in a chemotaxis model, Math. Meth. Appl. Sci.
2008; 31:45-70
[107] Wang Z.-A., Zhao K., Global Dynamics and Diusion Limit of a One-Dimesional Repulsive
Chemotaxis Model, Communications on Pure and Applied Aanlysis Vol.12, No.6,
Nov. 2013 pp. 3027-3046
[108] Wolansky G., Espejo E., The Patlak-Keller-Segel model of chemotaxis on R2 with singular
drift and mortality rate, Nonlinearity 26 (2013) 2315-2331 |