參考文獻 |
[1] L. A. Zadeh, ”Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
[2] E. H. Mamdani and S. Assilian, ”An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.
[3] C. Sun, W. L. Xu, J. E. Bronlund, and M. Morgenstern, ”Dynamics and Compliance Control of a Linkage Robot for Food Chewing,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 377-386, 2014.
[4] M. R. Soltanpour, P. Otadolajam, and M. H. Khooban, ”Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode,” IET Science, Measurement & Technology, vol. 9, no. 3, pp. 322-334, 2015.
[5] Q. Zhou, H. Li, and P. Shi, ”Decentralized Adaptive Fuzzy Tracking Control for Robot Finger Dynamics,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 501-510, 2015.
[6] H. J. Zhang, Q. Lu, W. Jian, and C. Yueyue, ”A T-S fuzzy control scheme for unicycle robots,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 5346-5351.
[7] T. Takagi and M. Sugeno, ”Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 15, pp. 116-132, 1985.
[8] S. J. Ho and B. S. Chen, ”Robust Fuzzy H∞ Estimator-Based Stabilization Design for Nonlinear Parabolic Partial Differential Systems With Different Boundary Conditions,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 208-222, 2016.
[9] L. Li, S. X. Ding, J. Qiu, and Y. Yang, ”Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation,” IEEE Transactions on Cybernetics, vol. 47, no. 2, pp. 283-294, 2017.
[10] Y. Wei, J. Qiu, P. Shi, and M. Chadli, ”Fixed-Order Piecewise-Affine Output Feedback Controller for Fuzzy-Affine-Model-Based Nonlinear Systems With Time-Varying Delay,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 945-958, 2017.
[11] J. W. Wang, H. X. Li, and H. N. Wu, ”A Membership-Function-Dependent Approach to Design Fuzzy Pointwise State Feedback Controller for Nonlinear Parabolic Distributed Parameter Systems With Spatially Discrete Actuators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1486-1499, 2017.
[12] X. Zhang, X. Liu, and Y. Li, ”Adaptive fuzzy tracking control for nonlinear strict-feedback systems with unmodeled dynamics via backstepping technique,” Neurocomputing, vol. 235, pp. 182-191, 2017.
[13] Z. Lin, S. Yu, L. J, S. Cai, and G. Chen, ”Design and ARM-Embedded Implementation of a Chaotic Map-Based Real-Time Secure Video Communication System,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7, pp. 1203-1216, 2015.
[14] T. M. Hoang, S. K. Palit, S. Mukherjee, and S. Banerjee, ”Synchronization and secure communication in time delayed semiconductor laser systems,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 22, pp. 10930-10947, 2016.
[15] M. Varan, F. Yalçın, and Y. Uyaroğlu, ”Synchronizations and secure communication applications of a third degree Malasoma system with chaotic flow,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 23, pp. 11086-11093, 2016.
[16] S. Khorashadizadeh and M.-H. Majidi, ”Chaos synchronization using the Fourier series expansion with application to secure communications,” AEU - International Journal of Electronics and Communications, vol. 82, pp. 37-44, 2017.
[17] B. Naderi and H. Kheiri, ”Exponential synchronization of chaotic system and application in secure communication,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 5, pp. 2407-2412, 2016.
[18] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, ”A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911-922, 2009.
[19] A. Sala and C. AriÑo, ”Relaxed Stability and Performance LMI Conditions for Takagi--Sugeno Fuzzy Systems With Polynomial Constraints on Membership Function Shapes,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1328-1336, 2008.
[20] K. Tanaka, H. Ohtake, and H. O. Wang, ”Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 39, no. 2, pp. 561-567, 2009.
[21] X. Xie, D. Yue, H. Zhang, and Y. Xue, ”Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach,” IEEE Transactions on Cybernetics, vol. 46, no. 3, pp. 630-40, 2016.
[22] H. K. Lam and M. Gam, ”Chaotic synchronization using fuzzy control approach,” International Journal of Fuzzy Systems, vol. 9, no. 2, pp. 116-121, 2007.
[23] H. K. Lam and L. D. Seneviratne, ”Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 55, no. 3, pp. 883-892, 2008.
[24] T. C. Lin, M. C. Chen, and M. Roopaei, ”Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control,” Engineering Applications of Artificial Intelligence, vol. 24, no. 1, pp. 39-49, 2011.
[25] S. Y. Li, L. M. Tam, S. E. Tsai, and Z. M. Ge, ”Novel Fuzzy Modeling and Synchronization of Chaotic Systems With Multinonlinear Terms by Advanced Ge-Li Fuzzy Model,” IEEE Transactions on Cybernetics, vol. 46, no. 10, pp. 2228-2237, 2016.
[26] Y. J. Sun, ”A simple observer design of the generalized Lorenz chaotic systems,” Physics Letters A, vol. 374, no. 7, pp. 933-937, 2010.
[27] Y. J. Sun, ”An exponential observer for the generalized Rossler chaotic system,” Chaos Solitons & Fractals, vol. 40, no. 5, pp. 2457-2461, 2009.
[28] C. D. Li and X. F. Liao, ”Lag synchronization of Rossler system and Chua circuit via a scalar signal,” Physics Letters A, vol. 329, no. 4-5, pp. 301-308, 2004.
[29] A. C. J. Luo and R. P. S. Han, ”A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 334b, no. 3, pp. 447-459, 1997.
[30] L. M. Pecora and T. L. Carroll, ”Synchronization in chaotic systems,” Physics Review Letters vol. 64, no. 8, pp. 821-824, 1990.
[31] X. Yang, D. W. C. Ho, J. Lu, and Q. Song, ”Finite-Time Cluster Synchronization of T-S Fuzzy Complex Networks With Discontinuous Subsystems and Random Coupling Delays,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2302-2316, 2015.
[32] E. Jayaprasath and S. Sivaprakasam, ”Accumulation of Intra-Cavity Propagation Delay in Synchronized Cascaded Chaotic Semiconductor Lasers,” IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1026-1033, 2013.
[33] H. Li, J. Wang, and P. Shi, ”Output-Feedback Based Sliding Mode Control for Fuzzy Systems With Actuator Saturation,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 6, pp. 1282-1293, 2016.
[34] S. M. A. Pahnehkolaei, A. Alfi, and J. A. Tenreiro Machado, ”Chaos suppression in fractional systems using adaptive fractional state feedback control,” Chaos, Solitons & Fractals, vol. 103, pp. 488-503, 2017.
[35] Y. J. Sun, ”A novel chaos synchronization of uncertain mechanical systems with parameter mismatchings, external excitations, and chaotic vibrations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 496-504, 2012.
[36] V. K. Yadav, S. Das, B. S. Bhadauria, A. K. Singh, and M. Srivastava, ”Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties,” Chinese Journal of Physics, vol. 55, no. 3, pp. 594-605, 2017.
[37] H. Dai, S. Zhao, and K. Chen, ”A chaos-oriented prediction and suppression model to enhance the security for cyber physical power systems,” Journal of Parallel and Distributed Computing, vol. 103, pp. 87-95, 2017.
[38] Y. Maeda, E. Yagi, and H. Makino, ”Synchronization with low power consumption of hardware models of cardiac cells,” Biosystems, vol. 79, no. 1–3, pp. 125-131, 2005.
[39] Z. J. Zhou, C. H. Hu, M. Y. Chen, and M. He, ”A robust APD synchronization scheme and its application to secure communication,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 346, no. 8, pp. 808-817, 2009.
[40] Y. Jui-Cheng and G. Jiun-In, ”A new image encryption algorithm and its VLSI architecture,” in 1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation, 1999, pp. 430-437.
[41] C. Jui and G. Jiun-In, ”A new chaotic key-based design for image encryption and decryption,” in 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings, 2000, vol. 4, pp. 49-52.
[42] S. J. Li, X. Zheng, X. Q. Mou, and Y. L. Cai, ”Chaotic encryption scheme for real-time digital video,” Real-Time Imaging Vi, vol. 4666, pp. 149-160, 2002.
[43] H. Dedieu, M. P. Kennedy, and M. Hasler, ”Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua′s circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 634-642, 1993.
[44] M. Hasler and Y. L. Maistrenko, ”An introduction to the synchronization of chaotic systems: Coupled skew tent maps,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 44, no. 10, pp. 856-866, 1997.
[45] G. Kolumban, M. P. Kennedy, and L. O. Chua, ”The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 11, pp. 1129-1140, 1998.
[46] W. M. Tam, F. C. M. Lau, and C. K. Tse, ”A multiple access scheme for chaos-based digital communication systems utilizing transmitted reference,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 51, no. 9, pp. 1868-1878, 2004.
[47] S. Callegari, R. Rovatti, and G. Setti, ”Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 793-805, 2005.
[48] C. K. Huang, S. C. Tsay, and Y. R. Wu, ”Implementation of chaotic secure communication systems based on OPA circuits,” Chaos Solitons & Fractals, vol. 23, no. 2, pp. 589-600, 2005.
[49] H. C. Chen, J. F. Chang, J. J. Yan, and T. L. Liao, ”EP-based PID control design for chaotic synchronization with application in secure communication,” Expert Systems with Applications, vol. 34, no. 2, pp. 1169-1177, 2008.
[50] K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley, 2001.
[51] S. Kawamoto, K. Tada, A. Ishigame, and T. Taniguchi, ”An approach to stability analysis of second order fuzzy systems,” in IEEE International Conference on Fuzzy Systems, 1992, pp. 1427-1434.
[52] J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, ”Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 151-155, 2017.
[53] J. Hou, R. Xi, P. Liu, and T. Liu, ”The switching fractional order chaotic system and its application to image encryption,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 2, pp. 381-388, 2017.
[54] K. Tanaka, T. Ikeda, and H. O. Wang, ”A unified approach to controlling chaos via an LMI-based fuzzy control system design,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 10, pp. 1021-1040, 1998.
[55] X. Zhao, Y. Yin, L. Zhang, and H. Yang, ”Control of Switched Nonlinear Systems via T-S Fuzzy Modeling,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 235-241, 2016.
[56] H. G. Chou, C. F. Chuang, W. J. Wang, and J. C. Lin, ”A Fuzzy-Model-Based Chaotic Synchronization and Its Implementation on a Secure Communication System,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 12, pp. 2177-2185, 2013.
[57] A. Sala and C. Arino, ”Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284-1295, 2009.
[58] G. R. Yu and H. T. Huang, ”A sum-of-squares approach to synchronization of chaotic systems with polynomial fuzzy systems,” in 2012 International conference on Fuzzy Theory and Its Applications (iFUZZY2012), 2012, pp. 175-180.
[59] Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, ”Stability Analysis and Region-of- Attraction Estimation Using Piecewise Polynomial Lyapunov Functions: Polynomial Fuzzy Model Approach,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 1314-1322, 2015.
[60] R. Furqon, Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, ”An SOS-Based Control Lyapunov Function Design for Polynomial Fuzzy Control of Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp. 775-787, 2017.
[61] S. P. A. P. P. S. P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB. 2004.
[62] G. Balas, A. Packard, P. Seiler, and U. Topcu. (2009). Robustness analysis of nonlinear systems.
[63] S. K. K. Chu and G. K. H. Pang, ”Comparison between different model of hexapod robot in fault-tolerant gait,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 32, no. 6, pp. 752-756, 2002.
[64] F. Seljanko, ”Towards omnidirectional locomotion strategy for hexapod walking robot,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp. 143-148.
[65] Y. J.-M. and K. J.-H., ”Optimal fault tolerant gait sequence of the hexapod robot with overlapping reachable areas and crab walking,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 29, no. 2, pp. 224-235, 1999.
[66] X. Duan, W. Chen, S. Yu, and J. Liu, ”Tripod gaits planning and kinematics analysis of a hexapod robot,” in 2009 IEEE International Conference on Control and Automation, 2009, pp. 1850-1855.
[67] K. Inoue, K. Ooe, and S. Lee, ”Pushing methods for working six-legged robots capable of locomotion and manipulation in three modes,” in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 4742-4748.
[68] D. M. Wilson, ”Insect walking,” Annu Rev Entomol, vol. 11, pp. 103-22, 1966.
[69] D. C. Kar, ”Design of statically stable walking robot: A review,” Journal of Robotic Systems, vol. 20, no. 11, pp. 671-686, 2003.
[70] S. A. A. Moosavian and A. Dabiri, ”Dynamics and planning for stable motion of a hexapod robot,” in 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010, pp. 818-823.
[71] K. Inagaki and H. Kobayashi, ”Adaptive wave gait for hexapod synchronized walking,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, pp. 1326-1331 vol.2.
[72] J. M. Yang, ”Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain,” Journal of Intelligent & Robotic Systems, journal article vol. 54, no. 4, pp. 613-627, 2009.
[73] S.-M. Song and K. J. Waldron, ”An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 60-71, 1987.
[74] R. B. McGhee and A. A. Frank, ”On the stability properties of quadruped creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331-351, 1968.
[75] J. M. Yang and J. H. Kim, ”Fault-tolerant locomotion of the hexapod robot,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 28, no. 1, pp. 109-16, 1998.
[76] T. T. Lee, C. M. Liao, and T. K. Chen, ”On the stability properties of hexapod tripod gait,” IEEE Journal on Robotics and Automation, vol. 4, no. 4, pp. 427-434, 1988.
[77] C. F. Resceanu, ”Control algorithms for multi-legged robots in fault conditions using fuzzy logic,” in 15th International Conference on System Theory, Control and Computing, 2011, pp. 1-5.
[78] Z. Y. Yang, C. F. Juang, and Y. H. Jhan, ”Hexapod robot wall-following control using a fuzzy controller,” in 11th IEEE International Conference on Control & Automation (ICCA), 2014, pp. 574-578.
[79] J. M. Yang and J. H. Kim, ”A fault tolerant gait for a hexapod robot over uneven terrain,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 30, no. 1, pp. 172-80, 2000.
[80] K. Kamikawa, T. Arai, K. Inoue, and Y. Mae, ”Omni-directional gait of multi-legged rescue robot,” in Robotics and Automation, 2004. Proceedings. ICRA ′04. 2004 IEEE International Conference on, 2004, vol. 3, pp. 2171-2176.
[81] Z. Y. Wang, X. L. Ding, and A. Rovetta, ”Analysis of typical locomotion of a symmetric hexapod robot,” Robotica, vol. 28, pp. 893-907, 2010.
[82] X. Chen, L. Q. Wang, X. F. Ye, G. Wang, and H. L. Wang, ”Prototype development and gait planning of biologically inspired multi-legged crablike robot,” Mechatronics, vol. 23, no. 4, pp. 429-444, 2013.
[83] Z. Liu, S. Chen, and X. Luo, ”Judgment and adjustment of tipping instability for hexapod robots,” in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013, pp. 1941-1946.
[84] A. Roennau, G. Heppner, M. Nowicki, J. M. Zoellner, and R. Dillmann, ”Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4888-4894.
[85] H. Gao et al., ”A real-time, high fidelity dynamic simulation platform for hexapod robots on soft terrain,” Simulation Modelling Practice and Theory, vol. 68, pp. 125-145, 2016.
[86] H. Deng, G. Xin, G. Zhong, and M. Mistry, ”Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications,” Robotics and Autonomous Systems, vol. 95, pp. 13-24, 2017.
[87] G. Zhong, L. Chen, and H. Deng, ”A Performance Oriented Novel Design of Hexapod Robots,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1435-1443, 2017.
[88] E. I. Guerra-Hernandez, A. Espinal, P. Batres-Mendoza, C. H. Garcia-Capulin, R. D. J. Romero-Troncoso, and H. Rostro-Gonzalez, ”A FPGA-Based Neuromorphic Locomotion System for Multi-Legged Robots,” IEEE Access, vol. 5, pp. 8301-8312, 2017.
[89] S. M. Jabbaryfar, S. B. Shouraki, and A. Meghdari, ”Fuzzy control of a quadruped robot foot trajectory,” in 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, pp. 1192-1196.
[90] H. K. Lam, F. H. Leung, and P. K. S. Tam, ”Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 33, no. 2, pp. 250-257, 2003.
[91] J. Qiu, G. Feng, and H. Gao, ”Fuzzy-Model-Based Piecewise H∞ Static-Output-Feedback Controller Design for Networked Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 919-934, 2010.
[92] H. O. Wang, K. Tanaka, and M. Griffin, ”Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model,” in Proceedings of 1995 IEEE International Conference on Fuzzy Systems, 1995, vol. 2, pp. 531-538 vol.2.
[93] C. F. Chuang, W. J. Wang, Y. J. Sun, and Y. J. Chen, ”T-S Fuzzy Model Based H-infinity Finite-Time Synchronization Design for Chaotic Systems,” International Journal of Fuzzy Systems, vol. 13, no. 4, pp. 358-368, 2011.
[94] H. Wang, Z. Z. Han, Q. Y. Xie, and W. Zhang, ”Finite-time chaos synchronization of unified chaotic system with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2239-2247, 2009.
[95] X. H. Yu and Z. H. Man, ”Fast terminal sliding-mode control design for nonlinear dynamical systems,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 49, no. 2, pp. 261-264, 2002.
[96] S. Hadef and A. Boukabou, ”Control of multi-scroll Chen system,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 351, no. 5, pp. 2728-2741, 2014.
[97] S. S. Roy and D. K. Pratihar, ”Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 2, pp. 400-416, 2013. |