博碩士論文 995401012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.186.132
姓名 周顥恭(Hao-Gong Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 模糊控制應用於渾沌系統和機器人系統
(Fuzzy Control Applications to Chaotic and Robotic Systems)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對渾沌保密系統和六足機器人系統,提出了模糊控制之設計與實現。首先,針對渾沌保密系統,提出兩種基於模糊建模之混沌系統同步方法。第一種方法提出了基於Takagi–Sugeno 模糊模型的 有限時間(finite-time)之混沌系統同步設計。首先,主僕系統分別被精確地表示為主僕T-S模糊模型。然後,設計出即使在僕系統中存在外部干擾,也能在有限時間T內實現主僕同步之模糊控制器,並利用具有Altera Cyclone IV 4CE115 FPGA晶片的開發板(Altera DE2-115)和電腦(PC)實現。在針對渾沌保密系統的第二種方法,則是提出考慮 性能及輸入限制,並基於多項式模糊模型之設計,用以同步具有多混沌子的陳混沌系統(multi-scroll Chen chaotic systems )。首先,利用主僕多項式模糊模型分別精確的表示主僕的多混沌子的陳混沌系統模型,再設計多項式模糊控制器來同步主僕系統。此外,為了抑制外部干擾和實際應用,在多項式模糊控制設計中也考慮到了 性能和輸入限制。透過兩台個人電腦和路由器實現保密通訊,其中主系統的電腦核心為Intel i5-5250U CPU,而從系統的電腦核心為Intel i5-3337U CPU。此外,主從系統和多項式模糊控制器的設計是利用MATLAB 2015b的Simulink實現。
針對六足機器人系統,本文提出了一種六足形機器人可以穩定在斜坡上行走的模糊邏輯控制策略,並採用速度較快的三角步態。機器人的姿態是由模糊控制器根據傾斜坡度進行調整,目的是讓機器人的重心(COG)垂直投影,保持在各足底形成的支撐多邊形中。此外,利用Denavit-Hartenberg轉換和正運動學來計算馬達和各足的終端位置。並安裝慣性測量單元( IMU)在機器人身體中心以獲取機器人在斜面上的旋轉矩陣,藉此推算出重心的垂直投影。並提出一種模糊邏輯控制器來調整支撐足的馬達,讓重心的垂直投影接近支撐多邊形的理想重心。最後,透過實驗,以證明所提出的模糊控制策略的有效性。透過提出的模糊邏輯控制,可以讓六足機器人的穩定邊界(stability margin)最大化,讓機器人可以穩定地在斜坡上行走。
摘要(英)
This dissertation proposes the design and implementation of fuzzy control for the chaos-based secure communication system (SCS) and hexapod robotic system. For the chaos-based SCS, two fuzzy-model-based approaches are proposed for synchronization the chaotic systems. The first approach proposes a T-S fuzzy-model-based finite-time chaotic synchronization design for the SCS. Firstly, the master and slave chaotic systems are exactly represented as the master and slave T-S fuzzy models respectively. Then the fuzzy controller is designed to guarantee that master-slave synchronization can be completely achieved within a pre-specified convergence time T even when an external disturbance exists in the slave system. The hardware of the chaos-based SCS with the proposed fuzzy control is implemented on a development board (Altera DE2-115), which comprises an Altera Cyclone IV 4CE115 FPGA chip, and on a personal computer (PC). In the second approach for SCS, a polynomial fuzzy-model-based design with considering a constraint on the control input is proposed to synchronize the multi-scroll Chen chaotic systems. Firstly, the master and slave multi-scroll Chen chaotic systems are exactly represented as the master and slave polynomial fuzzy models respectively. Then a polynomial fuzzy control is proposed for synchronizing the master and slave chaotic systems. Moreover, for restraining external disturbances and practical consideration, performance and a constraint on the control input are also considered in the polynomial fuzzy control design. The SCS is implemented by two personal computers (PCs) communicating with each other through a router. The master PC is with an Intel i5-5250U CPU, and the slave PC is with an Intel i5-3337U CPU. Moreover, the master and slave chaotic systems and the proposed polynomial fuzzy controller are implemented by the Simulink of MATLAB 2015b.
For the hexapod robotic systems, a fuzzy logic control is proposed such that the hexapod robot can stably walk on an incline. We apply the tripod gait for relatively fast walking. Moreover, according to the slope of an incline, the proposed fuzzy logic control modifies the posture of the hexapod robot such that the vertical projection of the center of gravity (COG) can be maintained in the support polygon. Moreover, the Denavit-Hartenberg (D–H) convention and forward kinematics are applied to calculate the positions of the motors and end points of the legs in the coordinate system of the robot’s body. An inertial measurement unit is settled at the center of the robot’s body to obtain the rotation matrix for calculating the vertical projection of COG when the robot is walking on an incline. Then, a fuzzy logic control is proposed to adjust the motor angles of supporting legs for maintaining the vertical projection of COG close to the COG of support polygon. The stability margin of the hexapod robot is maximized by the proposed fuzzy logic control, hence the robot can stably walk on an incline.
關鍵字(中) ★ 渾沌系統
★ 六足機器人
★ 模糊控制
★ D-H轉換
關鍵字(英) ★ Chaotic System
★ Hexapod robot
★ Fuzzy Control
★ Denavit -Hartenberg convention
★ H infinity
★ T-S Fuzzy-Model-Based
★ Polynomial Fuzzy-Model-Based
★ sum-of-squares (SOS)
論文目次 摘要.....I
Abstract.....II
誌謝.....IV
Contents.....V
List of Figures.....VII
List of Tables.....X
Chapter 1 Introduction.....1
1.1 Background and Motivation.....1
1.2 Review of Previous Works.....3
1.3 Organization and Main Tasks.....7
Chapter 2 Fuzzy-Model-Based Design of Chaotic Synchronization for Secure Communication System.....9
2.1 Introduction.....9
2.2 T-S Fuzzy-Model-Based Finite-time Synchronization Design.....11
2.2.1 Fuzzy Model of the Chaotic Systems.....12
2.2.2 Controller Design.....16
2.2.3 Implementation of Secure Communication.....21
2.2.4 Experiment.....25
2.3 Polynomial Fuzzy-Model-Based Control Design for Synchronizing Multi-scroll Chen Chaotic Systems.....30
2.3.1 Secure communication system based on the synchronization of multi-scroll Chen chaotic systems.....30
2.3.2 Polynomial-Fuzzy-Model-Based Design for Synchronization.....32
2.3.3 Simulation Results.....41
2.3.4 Experimental Results.....43
2.4 Summary.....56
Chapter 3 Fuzzy Control Strategy for a Hexapod Robot Walking on an Incline.....58
3.1 Introduction.....58
3.2 Hardware Architecture of the Hexapod robot.....58
3.3 Fuzzy Control Strategy for the Hexapod Robot Walking on an Incline.....61
3.3.1 Tripod gait for the hexapod robot.....61
3.3.2 Statically stable walking on an incline for the hexapod robot.....63
3.3.3 Fuzzy control design.....69
3.4 Experimental results.....77
3.4.1 Comparison between the results without control and with the fuzzy PD controller.....77
3.4.2 Comparison between the results with the fuzzy PD controller and linear PD controllers.....80
3.5 Summary.....81
Chapter 4 Conclusion and Future Works.....82
4.1 Conclusion.....82
4.2 Future Works.....83
References.....84
Publication List.....92
參考文獻
[1] L. A. Zadeh, ”Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
[2] E. H. Mamdani and S. Assilian, ”An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.
[3] C. Sun, W. L. Xu, J. E. Bronlund, and M. Morgenstern, ”Dynamics and Compliance Control of a Linkage Robot for Food Chewing,” IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 377-386, 2014.
[4] M. R. Soltanpour, P. Otadolajam, and M. H. Khooban, ”Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode,” IET Science, Measurement & Technology, vol. 9, no. 3, pp. 322-334, 2015.
[5] Q. Zhou, H. Li, and P. Shi, ”Decentralized Adaptive Fuzzy Tracking Control for Robot Finger Dynamics,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 501-510, 2015.
[6] H. J. Zhang, Q. Lu, W. Jian, and C. Yueyue, ”A T-S fuzzy control scheme for unicycle robots,” in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 5346-5351.
[7] T. Takagi and M. Sugeno, ”Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 15, pp. 116-132, 1985.
[8] S. J. Ho and B. S. Chen, ”Robust Fuzzy H∞ Estimator-Based Stabilization Design for Nonlinear Parabolic Partial Differential Systems With Different Boundary Conditions,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 208-222, 2016.
[9] L. Li, S. X. Ding, J. Qiu, and Y. Yang, ”Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation,” IEEE Transactions on Cybernetics, vol. 47, no. 2, pp. 283-294, 2017.
[10] Y. Wei, J. Qiu, P. Shi, and M. Chadli, ”Fixed-Order Piecewise-Affine Output Feedback Controller for Fuzzy-Affine-Model-Based Nonlinear Systems With Time-Varying Delay,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 4, pp. 945-958, 2017.
[11] J. W. Wang, H. X. Li, and H. N. Wu, ”A Membership-Function-Dependent Approach to Design Fuzzy Pointwise State Feedback Controller for Nonlinear Parabolic Distributed Parameter Systems With Spatially Discrete Actuators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1486-1499, 2017.
[12] X. Zhang, X. Liu, and Y. Li, ”Adaptive fuzzy tracking control for nonlinear strict-feedback systems with unmodeled dynamics via backstepping technique,” Neurocomputing, vol. 235, pp. 182-191, 2017.
[13] Z. Lin, S. Yu, L. J, S. Cai, and G. Chen, ”Design and ARM-Embedded Implementation of a Chaotic Map-Based Real-Time Secure Video Communication System,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 7, pp. 1203-1216, 2015.
[14] T. M. Hoang, S. K. Palit, S. Mukherjee, and S. Banerjee, ”Synchronization and secure communication in time delayed semiconductor laser systems,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 22, pp. 10930-10947, 2016.
[15] M. Varan, F. Yalçın, and Y. Uyaroğlu, ”Synchronizations and secure communication applications of a third degree Malasoma system with chaotic flow,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 23, pp. 11086-11093, 2016.
[16] S. Khorashadizadeh and M.-H. Majidi, ”Chaos synchronization using the Fourier series expansion with application to secure communications,” AEU - International Journal of Electronics and Communications, vol. 82, pp. 37-44, 2017.
[17] B. Naderi and H. Kheiri, ”Exponential synchronization of chaotic system and application in secure communication,” Optik - International Journal for Light and Electron Optics, vol. 127, no. 5, pp. 2407-2412, 2016.
[18] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, ”A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911-922, 2009.
[19] A. Sala and C. AriÑo, ”Relaxed Stability and Performance LMI Conditions for Takagi--Sugeno Fuzzy Systems With Polynomial Constraints on Membership Function Shapes,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1328-1336, 2008.
[20] K. Tanaka, H. Ohtake, and H. O. Wang, ”Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 39, no. 2, pp. 561-567, 2009.
[21] X. Xie, D. Yue, H. Zhang, and Y. Xue, ”Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach,” IEEE Transactions on Cybernetics, vol. 46, no. 3, pp. 630-40, 2016.
[22] H. K. Lam and M. Gam, ”Chaotic synchronization using fuzzy control approach,” International Journal of Fuzzy Systems, vol. 9, no. 2, pp. 116-121, 2007.
[23] H. K. Lam and L. D. Seneviratne, ”Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 55, no. 3, pp. 883-892, 2008.
[24] T. C. Lin, M. C. Chen, and M. Roopaei, ”Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control,” Engineering Applications of Artificial Intelligence, vol. 24, no. 1, pp. 39-49, 2011.
[25] S. Y. Li, L. M. Tam, S. E. Tsai, and Z. M. Ge, ”Novel Fuzzy Modeling and Synchronization of Chaotic Systems With Multinonlinear Terms by Advanced Ge-Li Fuzzy Model,” IEEE Transactions on Cybernetics, vol. 46, no. 10, pp. 2228-2237, 2016.
[26] Y. J. Sun, ”A simple observer design of the generalized Lorenz chaotic systems,” Physics Letters A, vol. 374, no. 7, pp. 933-937, 2010.
[27] Y. J. Sun, ”An exponential observer for the generalized Rossler chaotic system,” Chaos Solitons & Fractals, vol. 40, no. 5, pp. 2457-2461, 2009.
[28] C. D. Li and X. F. Liao, ”Lag synchronization of Rossler system and Chua circuit via a scalar signal,” Physics Letters A, vol. 329, no. 4-5, pp. 301-308, 2004.
[29] A. C. J. Luo and R. P. S. Han, ”A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 334b, no. 3, pp. 447-459, 1997.
[30] L. M. Pecora and T. L. Carroll, ”Synchronization in chaotic systems,” Physics Review Letters vol. 64, no. 8, pp. 821-824, 1990.
[31] X. Yang, D. W. C. Ho, J. Lu, and Q. Song, ”Finite-Time Cluster Synchronization of T-S Fuzzy Complex Networks With Discontinuous Subsystems and Random Coupling Delays,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 2302-2316, 2015.
[32] E. Jayaprasath and S. Sivaprakasam, ”Accumulation of Intra-Cavity Propagation Delay in Synchronized Cascaded Chaotic Semiconductor Lasers,” IEEE Journal of Quantum Electronics, vol. 49, no. 12, pp. 1026-1033, 2013.
[33] H. Li, J. Wang, and P. Shi, ”Output-Feedback Based Sliding Mode Control for Fuzzy Systems With Actuator Saturation,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 6, pp. 1282-1293, 2016.
[34] S. M. A. Pahnehkolaei, A. Alfi, and J. A. Tenreiro Machado, ”Chaos suppression in fractional systems using adaptive fractional state feedback control,” Chaos, Solitons & Fractals, vol. 103, pp. 488-503, 2017.
[35] Y. J. Sun, ”A novel chaos synchronization of uncertain mechanical systems with parameter mismatchings, external excitations, and chaotic vibrations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 496-504, 2012.
[36] V. K. Yadav, S. Das, B. S. Bhadauria, A. K. Singh, and M. Srivastava, ”Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties,” Chinese Journal of Physics, vol. 55, no. 3, pp. 594-605, 2017.
[37] H. Dai, S. Zhao, and K. Chen, ”A chaos-oriented prediction and suppression model to enhance the security for cyber physical power systems,” Journal of Parallel and Distributed Computing, vol. 103, pp. 87-95, 2017.
[38] Y. Maeda, E. Yagi, and H. Makino, ”Synchronization with low power consumption of hardware models of cardiac cells,” Biosystems, vol. 79, no. 1–3, pp. 125-131, 2005.
[39] Z. J. Zhou, C. H. Hu, M. Y. Chen, and M. He, ”A robust APD synchronization scheme and its application to secure communication,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 346, no. 8, pp. 808-817, 2009.
[40] Y. Jui-Cheng and G. Jiun-In, ”A new image encryption algorithm and its VLSI architecture,” in 1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation, 1999, pp. 430-437.
[41] C. Jui and G. Jiun-In, ”A new chaotic key-based design for image encryption and decryption,” in 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings, 2000, vol. 4, pp. 49-52.
[42] S. J. Li, X. Zheng, X. Q. Mou, and Y. L. Cai, ”Chaotic encryption scheme for real-time digital video,” Real-Time Imaging Vi, vol. 4666, pp. 149-160, 2002.
[43] H. Dedieu, M. P. Kennedy, and M. Hasler, ”Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua′s circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 634-642, 1993.
[44] M. Hasler and Y. L. Maistrenko, ”An introduction to the synchronization of chaotic systems: Coupled skew tent maps,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 44, no. 10, pp. 856-866, 1997.
[45] G. Kolumban, M. P. Kennedy, and L. O. Chua, ”The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 11, pp. 1129-1140, 1998.
[46] W. M. Tam, F. C. M. Lau, and C. K. Tse, ”A multiple access scheme for chaos-based digital communication systems utilizing transmitted reference,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 51, no. 9, pp. 1868-1878, 2004.
[47] S. Callegari, R. Rovatti, and G. Setti, ”Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 793-805, 2005.
[48] C. K. Huang, S. C. Tsay, and Y. R. Wu, ”Implementation of chaotic secure communication systems based on OPA circuits,” Chaos Solitons & Fractals, vol. 23, no. 2, pp. 589-600, 2005.
[49] H. C. Chen, J. F. Chang, J. J. Yan, and T. L. Liao, ”EP-based PID control design for chaotic synchronization with application in secure communication,” Expert Systems with Applications, vol. 34, no. 2, pp. 1169-1177, 2008.
[50] K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley, 2001.
[51] S. Kawamoto, K. Tada, A. Ishigame, and T. Taniguchi, ”An approach to stability analysis of second order fuzzy systems,” in IEEE International Conference on Fuzzy Systems, 1992, pp. 1427-1434.
[52] J. Ni, L. Liu, C. Liu, X. Hu, and S. Li, ”Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2, pp. 151-155, 2017.
[53] J. Hou, R. Xi, P. Liu, and T. Liu, ”The switching fractional order chaotic system and its application to image encryption,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 2, pp. 381-388, 2017.
[54] K. Tanaka, T. Ikeda, and H. O. Wang, ”A unified approach to controlling chaos via an LMI-based fuzzy control system design,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 10, pp. 1021-1040, 1998.
[55] X. Zhao, Y. Yin, L. Zhang, and H. Yang, ”Control of Switched Nonlinear Systems via T-S Fuzzy Modeling,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 235-241, 2016.
[56] H. G. Chou, C. F. Chuang, W. J. Wang, and J. C. Lin, ”A Fuzzy-Model-Based Chaotic Synchronization and Its Implementation on a Secure Communication System,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 12, pp. 2177-2185, 2013.
[57] A. Sala and C. Arino, ”Polynomial Fuzzy Models for Nonlinear Control: A Taylor Series Approach,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284-1295, 2009.
[58] G. R. Yu and H. T. Huang, ”A sum-of-squares approach to synchronization of chaotic systems with polynomial fuzzy systems,” in 2012 International conference on Fuzzy Theory and Its Applications (iFUZZY2012), 2012, pp. 175-180.
[59] Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, ”Stability Analysis and Region-of- Attraction Estimation Using Piecewise Polynomial Lyapunov Functions: Polynomial Fuzzy Model Approach,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 1314-1322, 2015.
[60] R. Furqon, Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, ”An SOS-Based Control Lyapunov Function Design for Polynomial Fuzzy Control of Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp. 775-787, 2017.
[61] S. P. A. P. P. S. P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB. 2004.
[62] G. Balas, A. Packard, P. Seiler, and U. Topcu. (2009). Robustness analysis of nonlinear systems.
[63] S. K. K. Chu and G. K. H. Pang, ”Comparison between different model of hexapod robot in fault-tolerant gait,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 32, no. 6, pp. 752-756, 2002.
[64] F. Seljanko, ”Towards omnidirectional locomotion strategy for hexapod walking robot,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 2011, pp. 143-148.
[65] Y. J.-M. and K. J.-H., ”Optimal fault tolerant gait sequence of the hexapod robot with overlapping reachable areas and crab walking,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 29, no. 2, pp. 224-235, 1999.
[66] X. Duan, W. Chen, S. Yu, and J. Liu, ”Tripod gaits planning and kinematics analysis of a hexapod robot,” in 2009 IEEE International Conference on Control and Automation, 2009, pp. 1850-1855.
[67] K. Inoue, K. Ooe, and S. Lee, ”Pushing methods for working six-legged robots capable of locomotion and manipulation in three modes,” in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 4742-4748.
[68] D. M. Wilson, ”Insect walking,” Annu Rev Entomol, vol. 11, pp. 103-22, 1966.
[69] D. C. Kar, ”Design of statically stable walking robot: A review,” Journal of Robotic Systems, vol. 20, no. 11, pp. 671-686, 2003.
[70] S. A. A. Moosavian and A. Dabiri, ”Dynamics and planning for stable motion of a hexapod robot,” in 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010, pp. 818-823.
[71] K. Inagaki and H. Kobayashi, ”Adaptive wave gait for hexapod synchronized walking,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, pp. 1326-1331 vol.2.
[72] J. M. Yang, ”Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain,” Journal of Intelligent & Robotic Systems, journal article vol. 54, no. 4, pp. 613-627, 2009.
[73] S.-M. Song and K. J. Waldron, ”An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 60-71, 1987.
[74] R. B. McGhee and A. A. Frank, ”On the stability properties of quadruped creeping gaits,” Mathematical Biosciences, vol. 3, pp. 331-351, 1968.
[75] J. M. Yang and J. H. Kim, ”Fault-tolerant locomotion of the hexapod robot,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 28, no. 1, pp. 109-16, 1998.
[76] T. T. Lee, C. M. Liao, and T. K. Chen, ”On the stability properties of hexapod tripod gait,” IEEE Journal on Robotics and Automation, vol. 4, no. 4, pp. 427-434, 1988.
[77] C. F. Resceanu, ”Control algorithms for multi-legged robots in fault conditions using fuzzy logic,” in 15th International Conference on System Theory, Control and Computing, 2011, pp. 1-5.
[78] Z. Y. Yang, C. F. Juang, and Y. H. Jhan, ”Hexapod robot wall-following control using a fuzzy controller,” in 11th IEEE International Conference on Control & Automation (ICCA), 2014, pp. 574-578.
[79] J. M. Yang and J. H. Kim, ”A fault tolerant gait for a hexapod robot over uneven terrain,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 30, no. 1, pp. 172-80, 2000.
[80] K. Kamikawa, T. Arai, K. Inoue, and Y. Mae, ”Omni-directional gait of multi-legged rescue robot,” in Robotics and Automation, 2004. Proceedings. ICRA ′04. 2004 IEEE International Conference on, 2004, vol. 3, pp. 2171-2176.
[81] Z. Y. Wang, X. L. Ding, and A. Rovetta, ”Analysis of typical locomotion of a symmetric hexapod robot,” Robotica, vol. 28, pp. 893-907, 2010.
[82] X. Chen, L. Q. Wang, X. F. Ye, G. Wang, and H. L. Wang, ”Prototype development and gait planning of biologically inspired multi-legged crablike robot,” Mechatronics, vol. 23, no. 4, pp. 429-444, 2013.
[83] Z. Liu, S. Chen, and X. Luo, ”Judgment and adjustment of tipping instability for hexapod robots,” in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013, pp. 1941-1946.
[84] A. Roennau, G. Heppner, M. Nowicki, J. M. Zoellner, and R. Dillmann, ”Reactive posture behaviors for stable legged locomotion over steep inclines and large obstacles,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4888-4894.
[85] H. Gao et al., ”A real-time, high fidelity dynamic simulation platform for hexapod robots on soft terrain,” Simulation Modelling Practice and Theory, vol. 68, pp. 125-145, 2016.
[86] H. Deng, G. Xin, G. Zhong, and M. Mistry, ”Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications,” Robotics and Autonomous Systems, vol. 95, pp. 13-24, 2017.
[87] G. Zhong, L. Chen, and H. Deng, ”A Performance Oriented Novel Design of Hexapod Robots,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1435-1443, 2017.
[88] E. I. Guerra-Hernandez, A. Espinal, P. Batres-Mendoza, C. H. Garcia-Capulin, R. D. J. Romero-Troncoso, and H. Rostro-Gonzalez, ”A FPGA-Based Neuromorphic Locomotion System for Multi-Legged Robots,” IEEE Access, vol. 5, pp. 8301-8312, 2017.
[89] S. M. Jabbaryfar, S. B. Shouraki, and A. Meghdari, ”Fuzzy control of a quadruped robot foot trajectory,” in 2014 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, pp. 1192-1196.
[90] H. K. Lam, F. H. Leung, and P. K. S. Tam, ”Design and stability analysis of fuzzy model-based nonlinear controller for nonlinear systems using genetic algorithm,” IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, vol. 33, no. 2, pp. 250-257, 2003.
[91] J. Qiu, G. Feng, and H. Gao, ”Fuzzy-Model-Based Piecewise H∞ Static-Output-Feedback Controller Design for Networked Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 919-934, 2010.
[92] H. O. Wang, K. Tanaka, and M. Griffin, ”Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model,” in Proceedings of 1995 IEEE International Conference on Fuzzy Systems, 1995, vol. 2, pp. 531-538 vol.2.
[93] C. F. Chuang, W. J. Wang, Y. J. Sun, and Y. J. Chen, ”T-S Fuzzy Model Based H-infinity Finite-Time Synchronization Design for Chaotic Systems,” International Journal of Fuzzy Systems, vol. 13, no. 4, pp. 358-368, 2011.
[94] H. Wang, Z. Z. Han, Q. Y. Xie, and W. Zhang, ”Finite-time chaos synchronization of unified chaotic system with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2239-2247, 2009.
[95] X. H. Yu and Z. H. Man, ”Fast terminal sliding-mode control design for nonlinear dynamical systems,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 49, no. 2, pp. 261-264, 2002.
[96] S. Hadef and A. Boukabou, ”Control of multi-scroll Chen system,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 351, no. 5, pp. 2728-2741, 2014.
[97] S. S. Roy and D. K. Pratihar, ”Dynamic modeling, stability and energy consumption analysis of a realistic six-legged walking robot,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 2, pp. 400-416, 2013.
指導教授 王文俊(Wen-June Wang) 審核日期 2017-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明