博碩士論文 100521104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.58.90
姓名 方偉廷(Wei-Ting Fang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於橋式T線圈之微型化切換式波束成型模組
(Miniaturized switched beamformer module using bridged-T coils)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,相位陣列已逐漸導入日常生活中的無線通訊裝置。在諸多相位陣列技術中,由於切換式波束成型器具有低功率消耗、低成本的特性,以及較容易實現,因此更適合使用在商用無線通訊系統中。本論文以應用於行動通訊裝置中的智慧天線系統為開發目標,提出兩種使用IPD製程實現的2.4 GHz切換式波束成型模組,並達成低功耗、微型化的特性。
橋式T線圈是本論文中的核心技術,它被用來實現波束成型模組中的諸多組件,以達到微型化設計的目標。本論文首先以一個多模態共振器帶通濾波器設計來介紹如何以橋式T線圈縮小電路面積。此寬頻帶通濾波器是目前已發表的多模態共振器帶通濾波器中面積最小的。
其次,橋式T線圈被用以實現切換式波束成型器中的諸多組件,包含:單刀雙擲開關、收發切換開關、以及巴特勒矩陣。藉由以橋式T線圈替代傳輸線的方式,這些元件的電路尺寸皆大幅的縮小。本研究以異質整合的方法整合這些元件,實現兩種切換式波束成型模組。第一個模組整合了4 × 4巴特勒矩陣、收發切換開關、以及吸收式單刀四擲開關,其模組尺寸僅有4.9 mm × 5.0 mm × 0.9 mm。第二個模組整合了4 × 4巴特勒矩陣以及兩個吸收式單刀雙擲開關,其模組尺寸只有4.9 mm × 5.0 mm,更只有0.4 mm的厚度。
此外,本論文亦提出一個雙頻橋式T線圈的設計方式,以利微型化雙頻波束成型器的設計。首先,以此設計方式實現雙頻分枝耦合器於IPD晶片中,為目前已發表的雙頻分枝耦合器中最小的。並將之用於2.45 GHz以及5 GHz雙頻巴特勒矩陣的設計,以實現微型化雙頻波束成型器。本研究所提出之波束成型模組皆具低成本、微型化、及低功耗的特性,將有助於手持式裝置上實現智慧天線系統。
摘要(英) Phased arrays have been gradually applied to wireless communication systems in our daily life. Among various phased array technologies, the switched beamformers are relatively easy to realize, and they are more suitable for commercial wireless communication systems due to their low power consumption and low cost. In this study, two 2.4-GHz switched beamformer modules in IPD process with low power consumption and compact size are proposed, which are targeted for implementing smart antenna systems in mobile communication devices.
The Bridged-T coil is the core technology used in this study. Specifically, the bridged-T coil is adopted to realize the building blocks of the proposed switched beamformer such that very compact circuit size can be achieved. The use of the bridged-T coil to achieve circuit size reduction of microwave circuits is first demonstrated by an ultra-wideband multi-mode resonator bandpass filter design. The smallest multi-mode resonator bandpass filter ever reported is presented.
Next, the bridged-T coils are used to realize the key building blocks of a 2.4-GHz switched beamformer modules, i.e., an absorptive single-pole double-throw (SPDT) switch, a T/R switch, and a 4 × 4 Butler matrix. By replacing the transmission line sections with bridged-T coils, the chip sizes of these circuit elements are largely reduced. Two switched beamformer modules are then realized based on the heterogeneous integration of these building blocks. The first one integrates a 4 × 4 Butler matrix, an absorptive SP4T switch, and a T/R switch in a compact module size of 4.9 mm × 5.0 mm ×0.9 mm. The second one integrates a 4 × 4 Butler matrix and two absorptive SPDT switches, which features a module size of 4.9 mm × 5.0 mm with a very low profile of only 0.4 mm.
In additional, dual-band bridged-T coil is proposed to help achieve miniature dual-band beamformer designs. A dual-band branch-coupler is first implemented in IPD process, which is the smallest dual-band branch-line coupler ever reported. Then, a dual-band 4 × 4 Butler matrix is designed for 2.45/5.8-GHz dual-band switched beamformer applications. The proposed switched beamformer modules feature low-cost, compact size, low power consumption, and low-profile. They can help introduce smart antenna systems into modern mobile applications.
關鍵字(中) ★ 橋式T線圈
★ 波束成型
★ 雙頻
關鍵字(英) ★ bridged-T coil
★ beamformer
★ SPDT switch
★ dual-band
論文目次
論文摘要 i
Abstract ii
Contents iv
List of Figures vi
List of Tables xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contributions 7
1.4 Organization 8
Chapter 2 Integrated Passive Device Process and Bridged-T Coil 11
2.1 Integrated Passive Device Process 11
2.2 Bridged-T Coil 12
2.3 Miniaturized UWB Bandpass Filter Using Bridged-T Coil 18
2.3.1 Filter Design 19
2.3.2 Filter Implementation 23
Chapter 3 Highly Integrated Switched Beamformer Module for 2.4 GHz Wireless Transceiver Application 27
3.1 Package Structure 27
3.2 Circuit Design 29
3.2.1 Butler Matrix 29
3.2.2 T/R Switch 35
3.2.3 SP4T Switch 37
3.3 Module Implementation and Results 38
Chapter 4 2.4-GHz Absorptive MMIC Switch for Switched Beamformer Application 52
4.1 Absorptive SPDT RF Switch 52
4.2 Absorptive Switch for Switched Beamformer Applications 62
4.3 Switch Beamformer Module 68
Chapter 5 Dual-Band Bridged-T Coil and its Application 83
5.1 Dual-Band Bridged-T Coil 83
5.2 Dual-Band Branch-Line Coupler 95
5.3 Dual-Band Butler Matrix 104
Chapter 6 Conclusions 114
6.1 Brief Conclusion 114
6.2 Future Work 115
References 118
Publication List 126
Journal Paper: 126
Conference Paper: 126
參考文獻 [1] A. S. Y Poon and M. Taghivand, “Supporting and enabling circuits for antenna arrays in wireless communications,” Proc. IEEE, vol. 100, no. 7, pp. 2207-2218, Jul. 2012
[2] H. Krishnaswamy and L. Zhang, “Analog and RF interference mitigation for integrated MIMO Receiver arrays,” Proc. IEEE, vol. 104, no. 3, pp. 561-575, Mar. 2016.
[3] A. Valdes-Garcia, S. T. Nicolson, J.-W. Lai, A. Natarajan, P.-Y. Chen, S.K. Reynolds, J.-H.C. Zhan, D.G. Kam, D. Liu, and B. Floyd, “A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010.
[4] E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, and D. Ritter, “A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1359-1375, Mar. 2013.
[5] F. Golcuk, T. Kanar, and G. M. Rebeiz, “A 90 - 100-GHz 4 x 4 SiGe BiCMOS polarimetric transmit/receive phased array with simultaneous receive-beams capabilities,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3099-3114, Aug. 2013.
[6] A. Natarajan, A. Valdes-Garcia, B. Sadhu, S. K. Reynolds, and B. D. Parker, “W-band dual-polarization phased-array transceiver front-end in SiGe BiCMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1989-2002, Jun. 2015.
[7] S. Sim, L. Jeon, and J.-G. Kim, “A compact X-band bi-directional phased-array T/R chipset in 0.13 m CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 562–569, Jan. 2013.
[8] D. Shin, C.-Y. Kim, D.-W. Kang, and G. M. Rebeiz, “A high-power packaged four-element X-band phased-array transmitter in 0.13-μm CMOS for radar and communication systems,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3060–3071, Aug. 2013.
[9] C. Liu, Q. Li, Y. Li, X.-D. Deng, X. Li, H. Liu, and Y.-Z. Xiong, “A fully integrated X-band phased-array transceiver in 0.13-μm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 575-584, Feb. 2016.
[10] L. Y. Chen, P. J. Peng, C. Kao, Y. L. Chen and J. Lee, “CW/FMCW/pulse radar engines for 24/26GHz multi-standard applications in 65nm CMOS,” IEEE Asian Solid-State Circuits Conf. Dig., Xiamen, 2015.
[11] M. Elkhouly, Y. Mao, C. Meliani, J. C. Scheytt, and F. Ellinger, “A G -band four-element Butler matrix in 0.13 µm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 1916-1926, Sep. 2014.
[12] C.-C. Kuo, H.-C. Lu, P.-A. Lin, C.-F. Tai, Y.-M. Hsin, and H. Wang, “A fully SiP integrated V-band Butler matrix end-fire beam-switching transmitter using flip-chip assembled CMOS chips on LTCC,” IEEE Trans. Microw. Theory Techn., vol.60, no. 5, pp. 1424-1436, May 2012.
[13] C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, and J. Papapolymerou, “A 60-GHz active receiving switched-beam antenna array with integrated Butler matrix and GaAs amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3599–3607, Nov. 2012.
[14] W. Choi, K. Park, Y. Kim, K. Kim, and Y. Kwon, “A V-Band switched beam-forming antenna module using absorptive switch integrated with 4 × 4 Butler Matrix in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4052-4059, Dec. 2010.
[15] H. Krishnaswamy and H. Hashemi, “A 4-channel 4-beam 24-to-26 GHz spatiotemporal RAKE radar transceiver in 90 nm CMOS for vehicular radar applications,” IEEE Int. Solid-State Circuits Conf. Techn. Dig., pp. 214–215, Feb. 2010.
[16] E. M. Chase and W. Kennan, “A power distributed amplifier using constant-R networks,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 811–815, Jun. 1986.
[17] Y. S. Jeong and T. W. Kim, “Design and analysis of swapped port coupler and its application in a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 764-770, Apr. 2010.
[18] N. Militaru, G. Lojewski, N. D. Codreanu and C. Ionescu, “Compact microwave bandpass filter using multilayer resonator-embedded packaging,” 2007 30th International Spring Seminar on Electronics Technology (ISSE), Cluj-Napoca, pp. 88-93, 2007.
[19] M. M. Elsbury, P. D. Dresselhaus, N. F. Bergren, C. J. Burroughs, S. P. Benz and Z. Popovic, “Broadband lumped-element integrated n-way power dividers for voltage standards,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 2055-2063, Aug. 2009.
[20] C. H. Wu and C. H. Tseng, “A compact branch-line coupler using π-equivalent shunt-stub-based artificial transmission lines,” Proc. Asia-Pacific Microw. Conf., pp. 802-805, Apr. 2010.
[21] M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6–8, Jan. 2002.
[22] H.-S. Wu, H.-J. Yang, C. J. Peng and C. K. C. Tzuang, “Miniaturized microwave passive filter incorporating multilayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Techn, vol. 53, no. 9, pp. 2713-2720, Sep. 2005.
[23] L. C. Hsu, Y. L. Wu, J. Y. Zou, H. N. Chu and T. G. Ma, “Periodic synthesized transmission lines with 2-D routing capability and its applications to power divider and couplers using integrated passive device process,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 493-501, Feb. 2016.
[24] J. Y. Zou, C. H. Wu and T. G. Ma, “Heterogeneous integrated beam-switching/ retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
[25] Y.-S. Lin, C.-C. Liu, K.-M. Li, and C.H. Chen, “Design of an LTCC triband transceiver module for GPRS mobile applications,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 12, pp. 2718–2723, Dec. 2004.
[26] T.-N. Kuo, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 2, pp. 90–92, Feb. 2006.
[27] Y.-S. Lin and J.-H. Lee, “Miniature ultra-wideband power divider using bridged T-coils,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 391–393, Aug. 2012.
[28] Y. S. Lin and J. H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594-2602, Jul. 2013.
[29] T.-S. Horng, J.-M. Wu, L.-Q. Yang, and S.-T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1015–1018, Jun. 2003.
[30] J. Butler, “Multiple beam antenna,” Sanders Associates Nashua, N.H. Int. Memo. RF-3849 Jan. 8, 1960.
[31] T.-Y. Chin, J.-C. Wu, S.-F. Chang, and C.-C. Chang, “A V-band 8 × 8 CMOS Butler matrix MMIC,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3538–3546, Dec. 2010.
[32] C.-C. Chang, C.-C. Lin, and W.-K. Cheng, “Fully integrated 60 GHz switched-beam phased antenna array in glass-IPD technology,” Electron. Lett., vol. 51, no. 11, pp. 804-806, May 2015.
[33] W.-Y. Chen, M.-H. Huang, P.-Y. Lyu, S.-F. Chang, and C.-C. Chang, “A 60-GHz CMOS 16-beam beamformer for two-dimensional array antennas,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2014.
[34] D. Titz, F. Ferrero, R. Pilard, C. Laporte, S. Jan, H. Ezzeddine, F. Gianesello, D. Gloria, G. Jacquemod, and C. Luxey, “New wideband miniature branchline coupler on IPD technology for beamforming applications,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 5, pp. 911-921, May 2014.
[35] J. Park, T. Chi, and H. Wang, “An ultra-broadband compact mm-wave butler matrix in CMOS for array-based MIMO systems,” Proc. IEEE Custom Integr. Circuit Conf. Dig., Sep. 2013.
[36] C.-C. Chang, T.-Y. Chin, J.-C. Wu, and S.-F. Chang, “Novel design of a 2.5-GHz fully integrated CMOS Butler matrix for smart-antenna systems,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 8, pp. 1757–1763, Aug. 2008.
[37] B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, “An 8 × 8 Butler matrix in 0.13-μm CMOS for 5–6-GHz multibeam applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 295–301, Feb. 2011.
[38] I. Haroun, T.-Y. Lin, D.-C. Chang, and C. Plett, “A compact 24–26 GHz IPD-based 4 × 4 Butler matrix for beam forming antenna systems,” Proc. Asia–Pacific Microw. Conf., Kaohsiung, Taiwan, pp. 166–168, Dec. 2012.
[39] D. Calzona, L. Boccia, A. Shamsafar and G. Amendola, “A BiCMOS 4×4 Butler matrix,” Proc. 9th Eur. Conf. on Antennas and Propagation (EuCAP), 2015.
[40] T.-Y. Chin, S.-F. Chang, J.-C. Wu, and C.-C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273-2282, Nov. 2010.
[41] B. Cetinoneri, Y. A. Atesal, J. Kim, and G. M. Rebeiz, “CMOS 4×4 and 8×8 Butler matrices,” IEEE MTT-S Int. Microw. Symp. Dig., 2010.
[42] T.-H. Tseng and Y.-S. Lin, “Miniature 2.4-GHz switched beamformer module using the integrated passive device technology,” Proc. 8th Eur. Conf. on Antennas and Propagation (EuCAP), pp. 2219-2222, Apr. 2014.
[43] B. Khabbaz, S. Morais, and S. Powell, “A GaAs DC-20 GHz SPDT absorptive switch,” Proc. 8th University/Government/Industry Microelectronics Symp., pp. 165-167, 1989.
[44] G.-L. Tan and G. M. Rebeiz, “DC-26 GHz MEMS series-shunt absorptive switches,” IEEE MTT-S Int. Microw. Symp. Dig., vol.1, pp. 325-328, 2001.
[45] W. M. L. Kuo, J. P. Comeau, J. M. Andrews, J. D. Cressler, and M. A. Mitchell, “Comparison of shunt and series/shunt nMOS single-pole double-throw switches for X-band phased array T/R modules,” IEEE Topical Meetings on Silicon Monolithic Integrated Circuits in RF Systems, pp. 249-252, 2007.
[46] T. Buber, F. Kolak, N. Kinayman, and J. Bennett, “A low-loss high-isolation absorptive GaAs SPDT PIN switch for 24 GHz automotive applications,” Proc. IEEE Radio and Wireless Conf., (RAWCON), pp. 349-352, 2003.
[47] J. G. Yang and K. Yang, “High-linearity K-band absorptive-type MMIC switch using GaN PIN-diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 37-39, Jan. 2013.
[48] S. Lee, J. Kim, Y. Kim, and Y. Kwon, “An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network,” J. Micromech. Microeng., vol. 19, no. 1, 01524, Jan. 2009.
[49] W. Choi, K. Park, Y. Kim, K. Kim, and Y. Kwon, “A V-Band switched beam-forming antenna module using absorptive switch integrated with 4×4 Butler Matrix in 0.13-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4052-4059, Dec. 2010.
[50] S. Kaleem, J. Kühn, R. Quay, and M. A. Hein, “Microwave monolithic integrated gallium-nitride switches for low static power reconfigurable switch matrix with passive transparent state for power failure redundancy,” IEEE MTT-S Int. Microw. Symp. Dig., 2015.
[51] T. M. Hancock, I. Gresham, and G. M. Rebeiz, “A differential sub-nanosecond high-isolation absorptive active SiGe 24 GHz switch for UWB applications,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Dig., pp. 497-500, 2004.
[52] T. M. Hancock and G. M. Rebeiz, “Design and analysis of a 70 ps differential SiGe RF switch,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 7, pp. 2403–2410, Jul. 2005.
[53] M. Thian and V. F. Fusco, “Ultrafast low-loss 42–70 GHz differential SPDT switch in 0.35 μm SiGe technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 655–659, Mar. 2012.
[54] M. Thian, N. B. Buchanan, and V. F. Fusco, “Ultrafast low-loss 40–70 GHz SPST switch,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 682-684, Dec. 2011.
[55] I.-H. Lin, M. DeVincentis, C Caloz, and T. Itoh, “Arbitrarily dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 4, pp. 1142–1149, Apr. 2004.
[56] K.-K. M. Cheng and F.-L. Wong, “A novel approach to the design and implementation of dual-band compact planar 90o branch-line coupler,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 11, pp. 2458–2463, Nov. 2004.
[57] K.-K. M. Cheng and S. Yeung, “A novel dual-band 3-dB branch-line coupler design with controllable bandwidths,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3055–3061, Oct. 2012.
[58] C.-L. Hsu, J.-T. Kuo and C.-W. Chang, “Miniaturized dual-band hybrid couplers with arbitrary power division ratios,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 1, pp. 149–156, Jan. 2009.
[59] P.-L. Chi and K.-L. Ho, “Design of dual-band coupler with arbitrary power division rations and phase differences,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 2965–2974, Dec. 2014.
[60] H. Zhang and K. J. Chen, “A stub tapped branch-line coupler for dualband operations,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 106–108, Feb. 2007.
[61] M.-J. Park, “Dual-band, unequal length branch-line coupler with center-tapped stubs,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 617–619, 2009.
[62] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1213–1221, May 2010.
[63] C. Collado, A. Grau, and F. De Flaviis, “Dual-band planar quadrature hybrid with enhanced bandwidth response,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 180-188, Jan. 2006.
[64] H. Kim, B. Lee and M. J. Park, “Dual-band branch-line coupler with port extensions,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 3, pp. 651-655, Mar. 2010.
[65] M.-J. Park and B. Lee, “Dual-band, cross coupled branch line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 655-657, Oct. 2005.
[66] L. K. Yeung, “A compact dual-band 90o coupler with coupled-line sections,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 9, pp. 2227–2232, Sep. 2011.
[67] C.-H. Yu and Y.-H. Pang, “Dual-band unequal-power quadrature branch-line coupler with coupled lines,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 10–12, Jan. 2013.
[68] S. Y. Zheng, S. H. Yeung, W. S. Chan, K. F. Man, S. H. Leung, and Q. Xue, “Dual-band rectangular patch hybrid coupler,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 7, pp. 1721–1728, Jul. 2008.
[69] S.-Y. Zheng, Y. Wu, Y. Li, Y. Liu, and Y. Long, “Dual-band hybrid coupler with arbitrary power division rations over the two bands,” IEEE Trans. Compon. Packag., Manuf. Technol., vol. 4, no. 8, pp. 1347–1358, Aug. 2014.
[70] H.-C. Lu, Y.-L. Kuo, P.-S. Huang, and Y.-L. Chang, “Dual-band CRLH branch-line coupler in LTCC by lumped elements with parasitic control,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 393-396, May 2010.
[71] A. Bekasiewicz and S. Koziel, “Miniaturised dual-band branch-line coupler,” Electron. Lett., vol. 51, no. 10, pp. 769–771, May, 2015.
[72] C. Gai, Y.-C. Jiao, and Y.-L. Zhao, “Compact dual-band branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 5, pp. 325-327, May 2016.
[73] C.-F. Chen, S.-F. Chang, and B.-H. Tseng, “Compact microstrip dual-band quadrature coupler based on coupled-resonator technique,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 487-489, Jul. 2016.
[74] C. Collado, A. Grau and F. De Flaviis, “Dual-band Butler matrix for WLAN systems,” IEEE MTT-S Int. Microw. Symp. Dig., 2005.
[75] K. Wincza, K. Staszek, I. Slomian and S. Gruszczynski, “Scalable multibeam antenna arrays fed by dual-band modified Butler matrices,” IEEE Trans. Antennas Propaga, vol. 64, no. 4, pp. 1287-1297, Apr. 2016.
[76] C. Zhou, J. Fu, H. Sun and Q. Wu, “A novel compact dual-band butler matrix design,” Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, pp. 1327-1330, 2014.
[77] H. Ren, et al., “A compact phased array antenna system based on dual-band Butler matrices,” 2013 IEEE Radio and Wireless Symposium, pp. 214-216, 2013.
[78] N. M. Jizat, S. K. A. Rahim and T. A. Rahman, “Dual band beamforming network integrated with array antenna,” 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, pp. 561-566, 2010.
[79] L. Zhu, S. Sun, W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796–798, Nov. 2005.
[80] R. Li, L. Zhu, “Compact UWB bandpass filter using stub-loaded multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 40–42, Jan. 2007.
[81] B. Y. Yao, Y. G. Zhou, Q. S. Cao, Y. C. Chen, “Compact UWB bandpass filter with improved upper-stopband performance,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 27–29, Jan. 2009.
[82] V. Sekar, K. Entesari, “Miniaturized UWB bandpass filters with notch using slow-wave CPW multiple-mode resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 80–82, Feb. 2011.
[83] Z. C. Hao, J. S. Hong, “UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 941–948, April 2010.
[84] Z. Z. Wu, Y. Shim, M. Rais-Zadeh, “Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 518–527, March 2012.
[85] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon. Hybrids, Manut Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
[86] W. T. Fang, C. H. Chen, Y. S. Lin, “2.4-GHz absorptive MMIC switch for switched beamformer application,” to appear in IEEE Trans. Microw. Theory Techn., 2017.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明