博碩士論文 102383002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:18.190.219.178
姓名 朱峯君(Feng-Jun Zhu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 6069鋁合金熱壓縮變形之熱加工性及動態行為分析
(Hot workability and dynamic behavior analysis of 6069 aluminum alloy under hot compression)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為6069鋁合金鑄錠經均質化處理之熱變形特性探討,使用Gleeble-3500熱加工模擬試驗機來進行熱壓縮實驗,實驗條件為300-500℃及應變速率0.001-10 s-1。從熱壓縮實驗之流變應力數據分別繪製成製程加工圖來分析可加工區域之熱變形條件,並且在可加工區域從顯微結構角度又可為成動態回復和局部動態再結晶之兩大區域。此外,由功率消耗效率圖也能進一步得知兩個區域中顯微結構變化的差異。其中動態回復區域之功率消耗效率約為中等,另一方面局部動態再結晶的功率消耗效率則較高。非加工區又稱作不穩定區,則是由局部變形來證明是不可採用之顯微結構。也從流變應力計算之應變速率敏感指數(m值)等值線圖分析,得知局部變形發生之熱變形條件,其m值都是較低。最後,熱變形動能分析則在局部動態再結晶區域中,發現隨著溫度提升、表面活化能是隨之降低。
不同熱壓縮條件,會影響顯微結構在經過固溶、時效處理後的變化,主要分界點為流變應力60MPa,經過熱處理會形成巨大的晶粒組織,主要機制為顆粒輔助之異常晶粒成長。另外則是低溫、高應變速率(流變應力> 60MPa)的條件經熱處理後,其機制為靜態再結晶。第三種高溫、低應變速率(流變應力< 60MPa)經熱處理後,則是形成長條狀的回復晶粒,機制是次晶界遷移。
透過EBSD分析動態再結晶的顯微結構演化、發現高於500℃及應變速率低於0.1 s-1的條件可以觀察到動態再結晶。且透過晶粒尺寸分布及晶界取向差分布發現6069鋁合金的動態再結晶機制屬於連續動態再結晶。
透過相對軟化與應變之間的關係,可以分析該熱變形條件的軟化機制。相對軟化因子變化趨勢可分為三類:其一、相對軟化因子隨應變增加至0.5而增加,而後增加應變量時則維持持平之狀態。此條件在變形後段時,應變硬化與動態軟化達成平衡。其二、相對軟化因子則呈現連續增加直到應變0.7。此類型的軟化機制是低應變以動態回復為主;高應變仍有動態回復並且另外加入局部動態再結晶。其三、相對軟化因子則隨著應變增加而遞減,此類型則代表應變硬化率高於動態回復的軟化效應。
摘要(英)
In this study, these tests were examined using Gleeble-3500 thermal simulation machine at temperature range of 300-550 °C and a strain rate range of 0.001-10 s−1. These examine were via hot compression tests. Hot workability of homogenized 6069 Al alloy cast ingot was investigated using processing map.
The processing map was constructed from compression data, through which identified a safe processing region. The microstructure and value of safe processing contour could divided into dynamic recovery and dynamic recrystallization domains. The variation in microstructure was related to the variation in efficiency of power dissipation (value of processing contour), as indicated by microstructure observations. Dynamic recovery and partial dynamic recrystallization was related to intermediate and high efficiency of power dissipation in safe regions, respectively. The microstructure of flow instability region was founding flow localization, which indicates non-working region. Those deformation conditions observation flow localization were corresponding to the low m values of strain rate sensitivity m map. The kinetic analysis revealed a decrease in apparent activation energy with increased temperature in the partial dynamic recrystallization region.
The microstructural evolution analyzed via electron backscatter diffraction. Dynamic recrystallization is recognized during deformation at temperatures higher than 500 °C/strain rates lower than 0.1 s-1 that showed the operating mechanism of dynamic recrystallization was related to continuous dynamic recrystallization. A relative softening factor was used to quantify the effect of flow softening, which was reveal softening mechanisms at the hot deformation condition.
The variations in the relative softening value with strain that divided three type.
First, the value of relative softening initially increases with strain up to a peak and then reaches a final steady state. This condition specifies that DRV balances strain-hardening. Second, the relative softening value continuously increases with strain. This finding illustrates that continuous softening is caused by DRV at low strains and DRV with partial DRX at high strains. Third, the progressive decrease in the relative softening value shows that the rate of strain-hardening is higher than that of softening of DRV.
關鍵字(中) ★ 6069鋁合金
★ 動態回復
★ 動態再結晶
★ 製程加工圖
★ 應變硬化行為
★ 軟化行為
★ 相對軟化行為
★ 顆粒輔助之異常晶粒成長
關鍵字(英) ★ AA6069 aluminum alloy
★ Dynamic recovery
★ Dynamic recrystallization
★ Processing map
★ Strain-hardening behavior
★ Softening behavior
★ relative softening behavior
★ Particle-Assisted Abnormal Grain Growth
論文目次
摘要 i
Abstract iii
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xiii
第一章 背景 1
1-1 前言 1
1-2 目的及研究方向 2
第二章 文獻回顧 4
2-1 6069鋁合金 4
2-2 熱變形過程中微結構變化 6
2-2-1 回復 7
2-2-2 動態回復 8
2-2-3 再結晶 9
2-2-4 動態再結晶 9
2-2-5 晶粒成長 10
2-3 製程加工圖 11
2-4 熱變形之動能分析 12
2-5 鋁合金熱變形行為 14
2-6 應變硬化行為 15
第三章 研究方法 18
3-1 實驗材料 18
3-2 實驗步驟 18
3-3 Gleeble 壓縮實驗 18
3-4 金相顯微結構 19
第四章 6069鋁合金熱加工性分析 20
4-1 流變行為 20
4-2 製程加工圖分析 21
4-3 顯微結構分析 22
4-4 應變速率敏感指數分析 25
4-5 熱變形之動能分析 26
4-6 6069鋁合金熱壓縮顯微結構對於時效處理之影響 28
4-6-1 6069鋁合金熱壓縮後顯微結構分析 29
第五章 6069鋁合金動態行為分析 32
5-1 應力應變圖分析 32
5-2 應變硬化行為 35
5-3 軟化行為 37
5-3-1 動態回復 37
5-3-2 動態再結晶 38
5-3-3 相對軟化 41
第六章 結論 44
參考文獻 47
參考文獻

[1] S.C. Bergsma, M.E. Kassner, X. Li, Delos-Reyes MA, Hayes TA, The Optimized Mechanical Properties of the New Aluminum Alloy AA 6069. J. Mater. Eng. Perform., 5, 1996, p.111–116.
[2] S.C. Bergsma, M.E. Kassner, X. Li, M.A. Wall, Strengthening in the new aluminum alloy AA 6069. Mater Sci. Eng. A, 254, 1998, p.112–118.
[3] F.J. MacMaster, K.S. Chan, S.C. Bergsma, M.E. Kassner, Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6. Mater. Sci. Eng. A, 289, 2000, p.54–59.
[4] M. Cai, D.P. Field, G.W. Lorimer, A systematic comparison of static and dynamic ageing of two Al–Mg–Si alloys. Mater. Sci. Eng. A, 373, 2004, p.65–71.
[5] X. Li, M.E. Kassner, S.C. Bergsma, Recrystallization Behavior of Rolled Ingots of 6061 and 6069 Aluminum Alloys. J. Mater. Eng. Perform., 9, 2000, p.416–423.
[6] H.Z. Li, J. Jiang, M. Deng, X.P. Liang, Hot deformation behavior and microstructure of 6069 aluminm alloy. Mater. Sci. Forum, 788, 2014, p.201–207.
[7] M.E. Kassner, P. Geantil, X. Li, A Study of the Quench Sensitivity of 6061-T6 and 6069-T6 Aluminum Alloys. J. Metall., 2011, 5 pages.
[8] B. Li, Q.L. Pan, Z.Y. Zhang, C. Li, Characterization of flow behavior and microstructural evolution of Al–Zn–Mg–Sc–Zr alloy using processing maps. Mater. Sci. Eng. A, 556, 2012, p.844–848.
[9] A. Jenab, A. Karimi Taheri, Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps. Int. J. Mech. Sci., 78, 2014, p.97–105.
[10] H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, Zhang XM, Hot deformation and processing map of 2519A aluminum alloy. Mater. Sci. Eng. A, 528, 2011, p.1548–1552.
[11] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J. Alloy Compd., 550, 2013, p.438–445.
[12] G. Meng, B.L. Li, H.M. Li, H. Huang, Z.R. Nie, Hot deformation and processing maps of an Al–5.7 wt.%Mg alloy with erbium., Mater. Sci. Eng. A, 517, 2009, p.132–137.
[13] B. Chen, X.L. Tian, X.L. Li, C. Lu, Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy. J. Mater. Eng. Perform., 23,2014, p.1929–1935.
[14] M. Rajamuthamilselvan, S. Ramanathan, Hot deformation behaviour of 7075 alloy. J Alloy Compd., 509, 2011, p.948-952.
[15] C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, F. Carreño, Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization. Mater. Sci. Eng. A, 552, 2012, p.530-539
[16] J. Luo, M.Q. Li, D.W. Ma, The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy. Mater. Sci. Eng. A, 532, 2012, p.548-557.
[17] H.J. McQueen, W. Blum, Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99), Mater. Sci. Eng. A, 290, 2000, p.95-107.
[18] H.J. McQueen, H. Mecking, Creep and Fracture of Engineering Materials and Structure, Pineridge Press, Swansea, UK, 1984, pp. 169.
[19] H.J. McQueen, Initiating nucleation of dynamic recrystallization, primarily in polycrystals, Mat. Sci. Eng. A, 101, 1987, p.149-160.
[20] A. Najafizadeh, S. Yue, J.J. Jonas, Influence of Hot Strip Rolling Parameters on Austenite Recrystallization in Interstitial Free Steels, ISIJ Int., 32, 1992, p.213-221.
[21] H.J. McQueen. N.D Ryan, Constitutive analysis in hot working, Mater. Sci. Eng. A, 322, 2002, p.43-63.
[22] M. Ueki, S. Horie, T. Nakamura, Factors affecting dynamic recrystallization of metals and alloys, Mater. Sci. Technol., 3, 1987, p.329-337.
[23] T. Mohri, M. Mabuchi, N. Nakmura, T. Asahina, H. Iwasaki, T. Aizawa, K. Higashi, Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Mater. Sci. Eng. A, 290, 2000, p.139-144.
[24] H.J. McQueen, D.L. Bourell, Hot workability of metals and alloys, JOM, 39, 1987, p.28-35.
[25] R.D. Doherty, D.A Hughes, F.J. Humphreys, J.J. Jonas, D. Juul-Jensen, M.E.Kassner, W.E. King. T.E. McNelley, H.J. McQueen, A.D Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A, 238, 1998 p.219-274.
[26] T. Sakai, J.J. Jonas., Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall., 32, 1984, p.189-209.
[27] C.M. Sellars, Recrystallization of metals during hot deformation, Philos. Trans. R. Soc. London, Ser. A, 288, 1978, p.147-158.
[28] S. Guo, D. Li, H. Pen, Q. Guo, J. Hu, Hot deformation and processing maps of Inconel 690 superalloy, J. Nucl. Mater., 410, 2011, p.52-58.
[29] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48 ,2003, p.171-273.
[30] J. F. Humphreys, Recrystallization and Recovery, in Materials Science and Technology, ed. By R. W. Cahn, P. Haasen and E. J. Kramer, VCH, Weinheim , 15, 1991, p.371-428.
[31] G. Rai. and N. J. Grant, Observations of Grain Boundary Sliding during Superplasticity Deformation, Metall. Trans. A, 14, 1983, p.1451-1458.
[32] T.G. Langdon, An Evaluation of the Strain Contributed by Grain Boundary Sliding in Superplasticity, Mater. Sci. Eng. A, 174, 1994, p.225-230.
[33] Van Vlack, Lawrence H., Elements of Material Science and Engineering 1989, p.221.
[34] Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, 1997.
[35] H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982.
[36] C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, and C.T. Wu, Strain-dependent constitutive analysis of extruded az61 mg alloy under hot compression, Mater. Sci. Eng. A, 2013, 565, p.1–8.
[37] H.Y. Wu, J.C. Yang, F.J. Zhu, and C.T. Wu, Hot Compressive Flow Stress Modeling of Homogenized AZ61 Mg Alloy Using Strain-Dependent Constitutive Equations, Mater. Sci. Eng. A, 574, 2013, p.17–24.
[38] H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditionsfor Initiation of Dynamic Recrystallization, Mater. Des., 31, 2010, p.1174–1179.
[39] L.E. Murr and E.V. Esquivel, Observations of Common Microstructural Issues Associated with Dynamic Deformation Phenomena: Twins, Microbands, Grain Size Effects, Shear Bands, and Dynamic Recrystallization, J. Mater. Sci., 39, 2004, p.1153–1168.
[40] G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu, Deformation Localization and Recrystallization in TC4 Alloy Under Impact Condition, Mater. Sci. Eng. A, 395, 2005, p.98–101.
[41] Y.B. Xu, Y.L. Bai, and M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and Its Alloys, J. Mater. Sci. Technol., 2, 2006, p. 737–744.
[42] Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, and M.A. Meyers, Shear Localization and Recrystallization in Dynamic Deformation of 8090 Al–Li Alloy, Mater. Sci. Eng. A, 299, 2001, p.287-295.
[43] S.E. Hsu, G.R. Edwards, and O.D. Sherby, Influence of Texture on Dislocation Creep and Grain Boundary Sliding in Fine-Grained Cadmium, Acta Metall., 31, 1983, p.763–772.
[44] H.J. McQueen and J.E. Hockett, Microstructures of Aluminum Compressed at Various Rates and Temperatures, Met. Trans., 1, 1970, p.2997–3004.
[45] Y.C. Lin, L.T. Li, Y.C. Xia, Y.Q. Jiang, Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy, J. Alloy. Compd., 550, 2013, p. 438–445.
[46] C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, F. Carreño, Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization, Mater. Sci. Eng. A, 552, 2012, p.530–539.
[47] X.H. Fan, M. Li, D.Y. Li, Y.C. Shao, S.R. Zhang, Y.H. Peng, Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation, Mater. Sci. Technol., 30, 2014, p.1263–1272.
[48] Y.B. Yang, Z.P. Xie, Z.M. Zhang, X.B. Li, Q. Wang, Y.H. Zhang, Processing maps for hot deformation of the extruded 7075 aluminum alloy bar: Anisotropy of hot workability, Mater. Sci. Eng. A, 615, 2014, p.183–190.
[49] Z.C. Sun, L.S. Zheng, H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact., 90, 2014 p.71–80.
[50] H.J. McQueen, E. Fry, J. Belling, Comparative constitutive constants for hot working of Al-4.4Mg-0.7Mn (AA5083), J. Mater. Eng. Perform., 10, 2001, p.164–172.
[51] X.D. Huang, H. Zhang, Y. Han, W.X. Wu, J.H. Chen, Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature, Mater. Sci. Eng. A, 527, 2010, p.485–490.
[52] M.R. Rokni, A. Zarei-Hanzaki, H.R. Abedi, Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures, Mater. Sci. Eng. A, 532, 2012, p.593–600.
[53] M.R. Rokni, A. Zarei-Hanzaki, A. Ali Roostaei, H.R. Abedi, Mater. Des.,32 ,2011, p.2339–2344.
[54] H.J. McQueen, W. Blum, Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99), Mater Sci. Eng. A, 290, 2000, p.95–107.
[55] H.J. McQueen, Development of dynamic recrystallization theory, Mater Sci. Eng. A, 387–389, 2004, p.203–208.
[56] M.E. Kassner, S.R. Barrabes, New developments in geometric dynamic recrystallization, Mater. Sci. Eng. A, 410–411, 2005, p.152–155.
[57] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60, 2014, p.130–207.
[58] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 2003, p.171–273.
[59] W. Pantleon, Stage IV work-hardening related to disorientations in dislocation structures, Mater. Sci. Eng. A, 387–389, 2004, p.257–261.
[60] L. Lecarme, C. Tekoğlu, T. Pardoen, Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, Int. J. Plast., 27, 2011, p.1203–1223.
[61] O. Nijs, B. Holmedal, J. Friis, E. Nes, Sub-structure strengthening and work hardening of an ultra-fine grained aluminium–magnesium alloy, Mater. Sci. Eng. A, 483–484, 2008, p.51–53.
[62] C.H. Caceres, A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A, 462, 2007, p.193–196.
[63] P. Lukáč, J. Balík, Kinetics of Plastic Deformation, Key Eng. Mater., 97–98, 1994, p.307–322.
[64] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metall., 29, 1981, p.1865–1875.
[65] H.J. McQueen, E. Evangelista, Mechanisms in creep and hot working to high strain; Microstructural evidence, inconsistencies. Part I: Substructure evolution; Grain interactions, Metall. Sci. Technol., 28, 2010, p.12–21.
[66] B. Verlinden, A. Suhadi, L. Delaey, A generalized constitutive equation for an AA6060 aluminium alloy, Scr. Metall., 28, 1993, p.1441–1446.
[67] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, second ed., Elsevier Ltd., Oxford, UK, 2004.
[68] C. Sellars and W.M. Tegart, On the Mechanism of Hot Deformation, Acta Metall., 14, 1966, p.1136–1138
[69] C. Sellars and W.M. Tegart, Hot Workability, Int. Metall. Rev., 17, 1972, p.1–24
[70] Hull, B. & Bacon, D.J., Introduction to dislocations. 4th ed. Oxford, Butterworth-Heinemann, 2001.
[71] Callister, W.D. Jr., Materials science and engineering, an introduction. 5th ed. New York: John Wiley & Sons, Inc, 2000.
[72] Kocks, U.F.& Mecking, H., Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 48, 2003, p.171-273.
[73] Rios, Paulo Rangel, Siciliano Jr, Fulvio, Sandim, Hugo Ricardo Zschommler, Plaut, Ronald Lesley, & Padilha, Angelo Fernando. Nucleation and growth during recrystallization. Materials Research, 8, 2005, p.225-238.
[74] E. A. Holm, T. D. Hoffmann, A. D. Rollett, and C. G. Roberts, Particle-assisted abnormal grain growth, IOP Conference Series: Materials Science and Engineering, 89, 2015, pp.012005.
[75] J. Dennis, P. S. Bate and F. J. Humphreys, Abnormal grain growth in metals, Materials Science Forum, 558-559, 2007, pp.717-722.
指導教授 李雄(Shyong Lee) 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明