博碩士論文 104323060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.218.78.102
姓名 羅冠承(Lo, Huan-Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD可視化腔體熱流場實驗驗證與 化學質傳模擬分析之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現今有機金屬化學氣相沉積(MOCVD)在半導體製程領域發展上應用相當廣泛,有機金屬化學氣相沉積法為目前製程LED以及高功率元件關鍵技術之一。並根據不同種類薄膜材料如單晶、多晶以及非晶等,磊晶材料進行沉積製程之技術。本文首先透過設計建立出實體可視化垂直進氣式腔體,並將系統設備進行完善整合,包含流量與壓力控制系統、基板高溫(800 ℃)之加熱器系統,以及配合旋轉載盤轉速達到高轉速(800 rpm)之實驗整合系統。藉由改變不同的單孔進氣流量、腔體壓力、基板溫度以及載盤轉速等重要影響製程參數,並探討反應腔內的流場分佈情形,使內部流場達到均勻性。
可視化實驗通入流體粒子為氧化鋁粉,藉由雷射槍面利用高速攝影機進行拍攝,取得一系列的流場動態圖,再利用Particle Image Velocimetry(PIV)影像分析軟體與Matlab進行後處理速度場分析。從實驗結果與數值模擬驗證可得知四種單一進氣口之流動型態,由垂直噴流產生的衝擊導流效應、高溫基板產生的熱浮力效應、載盤旋轉所產生的旋轉慣性力效應以及調整至均勻流場之栓塞流效應等影響。並分析載盤表面上流動邊界層之變化,驗證製程參數影響流場渦流之情形,並找出流場變化皆影響磊晶沉積速率與均勻度之關鍵因素。
第二部分透過加入進氣擴散導流設計整合於可視化腔體進行實驗,此狹縫進氣(Slit jet)設計由結果得知可有效改善單一進氣之入口流速分佈不均之情形。使得腔體內部及載盤表面之流動情形可達均勻流場,其影響可使速度分佈不會隨徑向增加而快速遞減。另外本文也利用數值模擬方法建立垂直式進氣模型,並加入MOCVD化學反應工程進行多重物理量耦合,建立出一套與實際MOCVD製程長率及均勻性計算分析技術,透過本研究可累積關鍵零組件能力以及製程參數配比之技術,廣泛應用於半導體工業之設備開發依據。
摘要(英)
In recent years, MOCVD in the field of semiconductor manufacturing was widely used, and the current process LED and high-power components one of the key technologies. According to different types of film materials, i.e., single crystal, Polycrystalline and amorphous, and other epitaxial materials for the deposition process technology, the study first through the design of the physical visualization of vertical inlet chamber and the system equipment to improve the integration. The process parameters include the flow rate, pressure control system, the substrate high temperature (800℃) of the heater system and with the rotating platform speed to achieve high speed (800 rpm) in the experimental equipment. The flow field distribution in the reaction chamber is explored to make uniform inside the flow field by changing the different flow rate of single air inlet, chamber pressure, substrate temperature and rotating speed in the susceptor.
Visualization of the experiment flow into the alumina fluid particles. It obtain dynamic images by using the high-speed camera for the shooting with a laser gun, and then the velocity field analysis was used by the Particle Image Velocimetry (PIV) and MATLAB analysis software. From the experimental results and numerical simulations show that the flow form in four kinds of single air inlet has the effect of vertical jet flow on the impact of diversion, the thermal buoyancy effect of the high temperature substrate, the rotational inertial force effect produced by the rotation of the susceptor and the plug flow effect adjusted to the uniform flow field. Through the analyzed the change of the flow boundary layer on the surface of the susceptor and verified the influence of the process parameters on the eddy current of the flow field, it was found that the major factors were affected the rate of the epitaxy and uniformity.
The second part is designed by adding inlet diffusion system, the slit jet designs from the results that can effectively improve the inlet of a single inlet flow rate of the uneven distribution of the situation. The results show that the flow inside the chamber and the surface of the platform can achieve the uniform flow field, and it caused that the velocity distribution decreases as the radial direction increases. In addition, the numerical simulation method is used to establish the vertical intake model, and the MOCVD chemical reaction project is added to the multi-physical coupling to establish a set of calculation and analysis of the length and uniformity of the actual MOCVD. Through this study, the key components can be accumulated Ability and process parameters of the ratio of technology, and it was widely used in the semiconductor industry equipment development basis.
關鍵字(中) ★ 有機金屬化學氣相沉積
★ 可視化腔體
★ 粒子圖像測速
關鍵字(英) ★ Metal Organic Chemical Vapor Deposition
★ Visualization Chamber
★ Particle Image Velocimetry
論文目次 摘要 I
英文摘要 II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1.1前言 1
1.2 MOCVD簡介 3
1.3反應腔體與進氣系統介紹 5
1.3.1 垂直式 (Vertical Reactor) 5
1.3.2 水平式 (Horizontal Reactor) 6
1.3.3 行星式 (Planetary Reactor) 7
1.3.4 近耦合噴淋式CCS (Close Coupled Showerhead) 7
1.3.5 緩衝分佈噴淋式BDS (Buffered Distributed Spray) 8
1.3.6 晶圓方向面 (Face down / up) 9
1.3.7其他特色形式 10
1.4文獻回顧 11
1.5研究動機與目的 15
第二章 基礎理論與研究內容 17
2.1熱流場 17
2.1.1腔體內部熱流場及質傳耦合 18
2.2薄膜沉積現象 19
2.2.1 化學氣相沉積 20
2.2.2薄膜反應機制 20
2.3化學反應 21
2.3.1氣相反應與路徑 22
2.4無因次分析 24
2.5薄膜長率與均勻度計算 26
第三章 實驗與數值模擬方法 28
3.1實驗設備與架構 28
3.1.1實驗設備介紹 28
3.1.2可視化腔體整體系統 29
3.1.3垂直式可視化實驗腔體 30
3.2實驗方法 37
3.2.1粒子追蹤與流體影響 37
3.2.2 粒子圖像測速(Particle Image Velocimetry,PIV) 37
3.2.3雷射光源與影像流程介紹 38
3.3實驗流程與步驟 40
3.3.1實驗配置 40
3.3.2實驗進行步驟 40
3.3.3速度場分析流程 42
3.4數值理論與介紹 44
3.4.1理論背景與軟體介紹 44
3.4.2有限元素法(Finite Element Method, FEM) 45
3.5模擬方法 46
3.5.1基本假設條件 46
3.5.2統御方程式 47
3.5.3混合氣體特性與物理性質 49
3.5.4氣體質量傳輸 50
3.5.5邊界條件 51
3.6模擬流程 54
3.7收斂條件 55
3.8網格分析原理與獨立性 56
第四章 結果與討論 60
4.1腔體內部流場分析 60
4.1.1渦流區域分析 62
4.1.2速度分佈分析 64
4.2製程參數對於實驗腔體內部熱流場 65
4.2.1不同進氣流量對於單一進氣口之影響 65
4.2.2不同腔體壓力對於單一進氣口之影響 71
4.2.3不同基板溫度對於單一進氣口之影響 77
4.2.4不同載盤轉速對於單一進氣口之影響 82
4.3流場型態歸類 87
4.3.1衝擊噴流效應流場(Impinging Induced Flow) 88
4.3.2熱浮力效應流場(Buoyancy Induced Flow) 89
4.3.3旋轉導流效應流場(Rotation Induced Flow) 89
4.3.4栓塞流場(Plug Flow) 90
4.3.5無因次參數對流場型態影響 91
4.4可視化腔體加入進氣模型 93
4.4.1 創新進氣擴散導流系統(Slit Jet)模型介紹 93
4.4.2 狹縫(Slit Jet)進氣模式之流速分佈情形 95
4.5化學氣相反應長率與均勻度 100
4.5.1狹縫進氣口 100
4.5.2環狀進氣口 103
4.5.3載盤公轉之平均長率與均勻度計算 105
第五章 結論 107
第六章 參考文獻 109
參考文獻 [1] C.J. Pinzone, Crystalgrower at en. wikipedia, 2006.
https://zh.wikipedia.org/wiki/File:GenericMOCVD.jpg
[2] B. Mitrovic, A. Gurary and W. Quinn, “Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Crystal Growth, Vol 303, pp. 323-329, 2007.
[3] Veeco, Technologies & Products, MOCVD Systems, 2017.
http://www.veeco.com.tw/technologies-and-products/mocvd-systems
[4] S. Kim, J. Seo, K. Lee, H. Lee, K. Park, Y. Kim and C. S. Kim, “Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD,” Journal of Crystal Growth, Vol 245, pp. 247–253, 2002.
[5] Aixtron, Product, Technologies, Planetary Reactor (MOCVD), 2017.
https://www.aixtron.com/en/products/technologies/
[6] Thomas Swan, Products & Services, MOCVD CCS, 2017.
http://www.thomas-swan.co.uk/
[7] Aixtron, Product, Technologies, Close Coupled Showerhead (MOCVD), 2017.
https://www.aixtron.com/en/products/technologies/
[8] S. Hu, Z. Gan, H. Yan and S. Liu, “A buffered distributed spray MOCVD reactor design,” Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), International Conference 13th, 2012.
[9] S. Hu, Z. Gan and S. Liu, “Buffered distributed spray MOCVD reactor for LED production,” Electronic Components & Technology Conference (ECTC), 63rd, 2013.
[10] Taiyo Nippon Sanso Group Company, MATHESON TNSC MOCVD, 2017.
https://www.tn-sanso.co.jp/en/
[11] G. Evans, and R. Greif, “Effect of boundary conditions on the flow and heat transfer in a rotating disk chemical vapor deposition reactor,"Numerical Heat Transfer, Vol 12, pp. 243-252, 1987.
[12] D.I. Fotiadis, and S. Kieda, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy:I. Effects of heat transfer characteristics, reactor geometry, and operating conditions,” Journal of Crystal Growth, Vol. 102, pp. 441-470, 1990.
[13] G. W. Young, S. I. Hariharan, and R. Carnahan, “Flow effects in a vertical CVD Reactor,” SIAM Journal on Applied Mathematics, Vol 52, pp. 1509-1532, December 1992.
[14] W. S. Winters And G. H. Evans, “Mixed Binary Convection In A Rotating Disk Chemical Vapor Deposition Reactor,” Int. J. Heat Mass Transfer, Vol 40, pp. 737-744, 1997.
[15] D.W. Weyburne, B.S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor”, Journal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[16] C. Park, J.Y. Hwang, M. Huang, and T.J. Anderson, “Investigation of an up flow cold-wall CVD reactor by gas phase Raman spectroscopy,” Thin Solid Films, Vol 409, pp. 88-97, 2002.
[17] T.C. Chang, P.H. Chiou, and T.F. Lin, “Visualization of mixed convective vortex rolls in an impinging jet flow of air through a cylindrical chamber,” International Journal of Heat and Mass Transfer, Vol. 45, Issue 16, pp. 3357-3368, July 2002.
[18] F. Terai, H. Kobayashi, S. Katsui, Y. Sato, T. Nagatomo And T. Homma “Newly Developed High-Speed Rotating Disk Chemical Vapor Deposition Equipment For Poly-Si Films” Japanese Journal Of Applied Physics, Vol 44, pp. 125–130, 2005.
[19] B. Mitrovic, A. Gurary, L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters,” Journal of Crystal Growth, Vol 287, pp. 656-663, 2006.
[20] R. Zuo, H. Zhang, X.l Liu, “Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets,” Journal of Crystal Growth, Vol 293, pp. 498-508, 2006.
[21] R. Zuo, Q. Xu, H. Zhang, “An inverse-flow showerhead MOVPE reactor design,” Journal of Crystal Growth, Vol 298, pp. 425-427, 2007.
[22] T. C. Cheng, T. F. Lin, J. Y. Yang and S. R. Jian, “Visualization of Vortex Flow Patterns with a Uniformly Perforated Showerhead in a Model Lamp Heat, Single-Wafer Thermal Processor,” Chemical Vapor Deposition, Vol 13, pp. 427-432, 2007.
[23] K. M. Chen, F. C. Hsieh, J. C. Hiseh, and T. F. Lin, “A further investigation of effects of jet-disk separation distance on steady mixed convective vortex flow resulting from a confined impinging air jet,” International Journal of Heat and mass transfer, Vol 52, Issue 23-24, pp. 5348-5357, November 2009.
[24] Z. Shuquan, R. Xiaomin, H. Yongqing, H. Hui and W. Qi, “Numerical studies on transport phenomena in LP-MOCVD reactor,” Sciencepaper Online, 2009.
[25] R. Zuo, H. Yu, N. Xu and X. He, “Influence of Gas Mixing and Heating on Gas Phase Reactions in GaN MOCVD Growth,” J. Solid State Sci. Technol., vol 1, pp. 46-53, 2012.
[26] 游翔霖,「MOCVD噴淋式腔體沉積模擬與進氣系統分析」,國立中央大學,碩士論文,民國一O三年。
[27] Y.H. Liu, L.W. Tseng, C.Y. Huang, K.L. Lin, C.C. Chen, “Particle image velocimetry measurement of jet impingement in a cylindrical chamber with a heated rotating disk”, International Journal of Heat and Mass Transfer, Vol 65, pp. 339-347, 2013.
[28] 賴冠甫,「化學氣相沉積室內多孔式噴灑頭與外環進氣對於流場影響之研究」,國立交通大學,碩士論文,民國一O二年。
[29] 彭冠中,「化學氣相反應室內高溫基板對於流場影響之研究」,國立交通大學,碩士論文,民國一O四年。
[30] S. Hua, S. Liu, Z. Zhang, H. Yand, Z. Gan and H. Fang, “A novel MOCVD reactor for growth of high-quality GaN-related LED layers,” Journal of Crystal Growth, Vol 415, pp. 72-77, 2015.
[31] E.D. Koronaki, G.P. Gakis, N. Cheimarios and A.G. Boudouvis, “Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software,” Chemical Engineering Science, Vol 150, pp. 26-34, 2016.
[32] P.A. Gkinis, I.G. Aviziotis, E.D. Koronaki⁎, G.P. Gakis and A.G. Boudouvis, “The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor,” Journal of Crystal Growth, Vol 458, pp. 140-148, 2017.
[33] D. Sengupta, S. Mazumder, W. Kuykendall and S. A. Lowry, “Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth”, J. Crystal Growth, Vol.279, pp. 369–382, 2005.
[34] Z. Zhang, H. Fang, Q. Yao, H. Yan and Z. Gan, “Species transport and chemical reaction in a MOCVD reactor and their influence on the GaN growth uniformity” , J. Crystal Growth, Vol.454, pp. 87–95, 2016.
[35] M.S. Andrle and J.L. Crassidis, “Geometric Integration of Quaternions,” AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, AIAA , pp. 2012-4421, Aug. 2012.
[36] 周侑賢,「MOCVD垂直進氣模式之創新進氣模擬設計與熱流場分析研究」,國立中央大學,碩士論文,民國一O五年。
指導教授 蕭述三(Hsiau, Shu-San) 審核日期 2017-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明