博碩士論文 103323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.137.164.24
姓名 邱瑞祥(CHIU, JUI-HSIANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 時變流率對多孔介質指形流的影響
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多孔介質指形流泛指一種流動介面的不穩定性現象,時常發生於低黏度流體驅替高黏度流體的過程。過去研究證實線性時變流率可以抑制徑向Hele-Shaw cell的注入流指形,然而對於吸出流指形與流體壁面間的濕潤性影響則尚無研究。本文使用徑向Hele-Shaw cell研究時變流率對低黏度流體推動高黏度流體的影響,並針對三個重要參數:毛細數、驅替時間及濕潤性進行探討。研究結果顯示對於注入實驗,非濕潤流體驅替濕潤流體的排移式較濕潤流體驅替非濕潤流體的浸潤式穩定許多,而於實驗考慮的不同之毛細數與驅替時間時變流率相較於固定流率皆具有抑制指形的效果。對於吸出實驗,只有毛細數較低的情況時變流率才具有抑制指形的效果,而驅替時間則會有一適當範圍可使得時變流率得到指形抑制效果與最少的待驅替流體殘留值;另外,濕潤性影響而產生的濕潤膜現象對吸出時變流率亦具有一定的影響力,可透過計算濕潤膜來修正時變流率以達到較佳的介面穩定效果。
摘要(英) Viscos fingering is a fluid interface instability phenomenon. It occurs when a less viscous fluid displaces another relatively more viscous fluid. For this problem, most researchers have used Hele-Shaw cells to study the fingering effects. Previous literature has shown that a linearly time-dependent injection flow rate can suppress viscous fingering in a drainage flow. However, it is not clear whether this is still true for other situations, like an imbibition displacement and extraction flow. In this study we used a radial Hele-Shaw cell, in which less viscous fluids were used to displace more viscous fluids to experimentally investigate how viscous fingering may evolve for different wettability with time-dependent flow rates. Effects of dimensionless final time, and capillary number were considered too. The results showed that the linearly time-dependent injection flow rate could more effectively suppress viscous fingering in drainage displacement than in imbibition displacement. No matter how capillary number, dimensionless final time and wettability change, the linear injection rate can still suppress the fingering instability. However, for the extraction case, the linearly time-dependent flow rate could not always suppress the fingering instability. The linearly time-dependent flow rate could suppress the fingering instability only for lower capillary numbers. For the dimensionless final time, there might exist an appropriate range, in which the linearly time-dependent flow rate suppress the fingering instability. For wettability effect, the wetting film impairs the suppression effect of the linearly time-dependent flow rate on viscous fingering. Based on the finding, the linearly time-dependent flow rate should be adjusted taken into account the wetting film.
關鍵字(中) ★ 指形流
★ Hele-Shaw cell
★ 時變流率
★ 濕潤性
★ 吸出流動
★ 注入流動
關鍵字(英)
論文目次
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
符號表 xi
第一章、 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 研究目的 7
第二章、實驗系統 14
2-1 實驗設備 14
2-1-1 Hele-Shaw cell系統建構 14
2-1-2 注射泵 16
2-1-3 影像觀測處理系統 16
2-2 注入實驗 17
2-3 吸出實驗 18
2-3-1 浸潤吸出實驗步驟 19
2-3-2 排移吸出實驗步驟 20
2-4 時變流率實驗 20
第三章、注入實驗結果 28
3-1 參數定義與介紹 28
3-2 介面穩定度 29
3-3 濕潤性 30
3-4 實驗結果I:毛細數的影響 30
3-5 實驗結果II:無因次最終時間的影響 33
第四章、吸出實驗結果 49
4-1 吸/注流差異 49
4-2 實驗結果I:毛細數的影響 51
4-3 實驗結果II:無因次最終時間的影響 53
4-4 殘留量(Residue) 56
4-5 實驗結果III:濕潤膜的影響 59
第五章、結論與未來展望 85
5-1 結論 85
5-2 未來展望 87
參考文獻 88
參考文獻
Aime, R. S. 2011. An evaluation of NAPL wettability in 2-D visualization experiments. Southern Illinois University Carbondale.
Al-Housseiny, T. T., Tsai, P. A. and Stone, H. A. 2012. Control of interfacial instabilities using flow geometry. Nature Physics, Vol. 8, pp. 747–750.
Bataille, J. 1968. Stabilite d’un deplacement radius non miscible. Rev. Inst. Fr. Pet., Vol. 23, pp. 1349-1364.
Bear, J. 1972. Dynamics of fluids in porous media. Drainage and Imbibition (pp. 449-451), New York, Reprint of the American Elsevier.
Ben-Jacob, E. 1997. From snowflake formation to growth of bacterial colonies II: Cooperative formation of complex colonial patterns. Contemporary Physics, Vol. 38, number 3, pp. 205 -241.
Callan-Jones, A. C., Joanny, J. F. and Prost, J. 2008. Viscous-Fingering-Like instability of cell fragments. Phys. Rev. Lett., Vol. 100, 258106.
Chen, C. Y. and Huang, Y. S. 2014. Radial Hele-Shaw flow with suction: Fully nonlinear pattern formation. Phy. Rev., Vol. 89, 053006.
Chuoke, R. L., Meurs, P. v. and Poel, C. v. d. 1959. The instability of slow, immiscible,viscous liquid-liquid displacements in permeable media. Petroleum Transactions, Vol. 216, pp. 188-194.
Dawe, R. A., Caruana, A. and Grattoni, C. A. 2011. Microscale visual study of end effects at permeability discontinuities. Transp Porous Med, Vol. 86, Iss. 2, pp. 601–616.
DeGregoria, A. J. 1985. A predictive Monte Carlo simulation of two-fluid flow through porous media at finite mobility ratio. Phys. Fluids, Vol. 28, Iss. 10, pp. 2933-2935.
Dias, E. O., Parisio, F. and Miranda, J. A. 2010. Suppression of viscous fluid fingering: A piecewise-constant injection process. Phys. Rev. E, Vol. 82, Iss. 6, 067301.
Dias, E. O. and Miranda, J. A. 2012. Minimization of viscous fluid fingering: A variational scheme for optimal flow rates. Phys. Rev. Lett, Vol. 109, 144502.
Ganesh, V. A., Raut, H. K., Nair, A. S. and Ramakrishna, S. 2011. A review on self-cleaning coatings. Journal of Dynamic, Vol. 21, 16304.
Gorell, S. B. and Homsy, G. M. 1983. A theory of the optimal policy of oil recovery by secondary displacement processes. SIAM J. Appl. Math., Vol. 43, Iss. 1, pp.79–98.
Glycerine Producers′ Association. 1963. Physical properties of glycerine and its solutions. New York : Glycerine Producers′ Association.
Han, W. S., Lee, S. Y., Lu, C. and McPherson, B. J. 2010. Effects of permeability on CO2 trapping mechanisms and buoyancy‐driven CO2 migration in saline formations. Water Resources Research, Vol. 46, W07510.
Hill, S. 1952. Channelling in packed columns. Chem. Eng. Sci., Vol. 1, pp. 247-53.
Homsy, G. M. 1987. Viscous fingering in porous media. Ann. Rev. Fluid Mech., Vol. 19, pp. 271-311.
Huang, Y. S. and Chen, C. Y. 2015. A numerical study on radial Hele-Shaw flow: influence of fluid miscibility and injection scheme. Computational Mechanics, Vol. 55, Iss. 2, pp. 407-420.
Hugaboom, D. A. 2002. Recovery of coal tar and creosote from porous media the influence of wettability. Ground Water Monitoring and Remediation, Vol. 22, Iss. 4, pp. 83–90.
Huppert, H. E. and Neufeld, J. A. 2014. The fluid mechanics of carbon dioxide sequestration. Fluid Mech., Vol. 46, pp. 255-272.
Langer, J. S. 1980. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys., Vol. 52, Iss. 1.
Lenormand, R. 1986. Pattern growth and fluid displacements through porous media. Physica, Vol. 140, pp. 114-123.
Leshchiner, A., Thrasher, M., Mineev-Weinstein, M. B. and Swinney, H. L. 2010. Harmonic moment dynamics in Laplacian growth. Phys. Rev. E, Vol. 81, 016206.
Li, S. W., Lowengrub, J. S., Fontana, J. and Palffy-Muhoray, P. 2009. Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett., Vol. 102, 174501.
Liang, S. 1986. Random walk simulations of flow in Hele-Shaw cells. Phys. Rev. A, Vol. 33, pp. 2663-2674.
Martyushev, L. M. and Birzina, A. I. 2008. Specific features of the loss of stability during radial displacement of fluid in the Hele–Shaw cell. J. Phys.: Condens. Matter, Vol. 20, Number 4, 045201.
Maxworthy, T. 1989. Experimental study of interface instability in a Hele-Shaw cell. Phys. Rev. A, Vol. 39, 5863.
Park, C. W. and Homsy, G. M. 1981. The instability of long fingers in Hele-Shaw flows. Phys. Fluids, Vol. 28, pp. 1583-1585.
Paterson, L. 1981. Radial fingering in a Hele-Shaw cell. J. Fluid Mech., Vol. 113, pp. 513-529.
Pihler-Puzovic´, D., Illien, P., Heil, M. and Juel, A. 2012. Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett., Vol. 108, 074502.
Sader, J. E., Chan, D. Y. C. and Hughes, B. D. 1994. Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Phys. Rev., Vol. 49, Iss. 1, 420.
Saffman, P. G. and Taylor, G. 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 245, pp. 312- 329.
Sinha, P. K. and Wang, C. Y. 2007. Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell. Electrochim. Acta, Vol. 52, pp. 7936–7945.
Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M. and Lindsay, H. M. 1986. Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett., Vol. 57, pp. 1718-1721.
Tabeling, P. and Libchaber, A. 1986. Film draining and the Saffman-Taylor problem. Phys. Rev. A, Vol. 33, 794(R).
Tabeling, P., Zocchi, G. and Libchaber, A. 1987. An experimental study of the Saffman-Taylor instability. Journal of Fluid Mechanics, Vol. 177, pp. 67-82.
Than, P., Preziosi, L., Josephl, D. D. and Arney, M. 1988. Measurement of interfacial tension between immiscible liquids with the spinning road tensiometer. Journal of Colloid and Interface Science, Vol. 124, Iss. 2, pp. 552-559.
Thome, H., Rabaud, M., Hakim, V. and Couder, Y. 1989. The Saffman-Taylor instability: From the linear to the circular geometry. Physics of Fluids A: Fluid Dynamics, Vol. 1, Iss. 2, pp. 224-240.
Wilson, S. D. R. 1975. A note on the measurement of dynamic contact angles. J. Colloid Interface Sci., Vol. 51, pp. 532-534.
Zheng, Z., Kim, H. and Stone, H. A. 2015. Controlling viscous fingering using Time-Dependent strategies. Phys. Rev. Lett., Vol. 115, 174501.
林再興,2004,「石油採收技術與蘊藏量估算」,科學發展,382期,19-23頁。
指導教授 鍾志昂 審核日期 2017-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明