參考文獻 |
REFERENCES
[1] M. Gel, S. Kandasamy, K. Cartledge, and D. Haylock, ”Fabrication of free standing microporous COC membranes optimized for in vitro barrier tissue models,” Sensors and Actuators A: Physical, vol. 215, pp. 51-55, 2014.
[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, ”The present and future role of microfluidics in biomedical research,” Nature, vol. 507, pp. 181-9, Mar 13 2014.
[3] ”Microfluidics in search of a killer application,” Nature Methods, vol. 4, p. 5, 2007.
[4] H. Becker and C. Gartner, ”Polymer microfabrication technologies for microfluidic systems,” Anal Bioanal Chem, vol. 390, pp. 89-111, Jan 2008.
[5] A. M. Wan, A. Sadri, and E. W. Young, ”Liquid phase solvent bonding of plastic microfluidic devices assisted by retention grooves,” Lab Chip, vol. 15, pp. 3785-92, 2015.
[6] C.-W. Tsao and D. L. DeVoe, ”Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2008.
[7] H. Shinohara, J. Mizuno, and S. Shoji, ”Studies on low-temperature direct bonding of VUV, VUV/O3 and O2 plasma pretreated cyclo-olefin polymer,” Sensors and Actuators A: Physical, vol. 165, pp. 124-131, 2011.
[8] M. M. Alenka Vesel, ”Surface modification and ageing of PMMA polymer by oxygen plasma treatment,” vacuum, vol. 86, p. 4, 2012.
[9] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, ”Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment,” Lab Chip, vol. 7, pp. 499-505, Apr 2007.
[10] S. Roy, C. Y. Yue, S. S. Venkatraman, and L. L. Ma, ”Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers,” Sensors and Actuators B: Chemical, vol. 178, pp. 86-95, 2013.
[11] H. Yu, Z. Z. Chong, S. B. Tor, E. Liu, and N. H. Loh, ”Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating,” RSC Adv., vol. 5, pp. 8377-8388, 2015.
[12] R. K. Jena, C. Y. Yue, and L. Anand, ”Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique,” Sensors and Actuators B: Chemical, vol. 157, pp. 518-526, 2011.
[13] L. Riegger, O. Strohmeier, B. Faltin, R. Zengerle, and P. Koltay, ”Adhesive bonding of microfluidic chips: influence of process parameters,” Journal of Micromechanics and Microengineering, vol. 20, p. 087003, 2010.
[14] L. El Fissi, D. Vandormael, and L. A. Francis, ”Direct assembly of cyclic olefin copolymer microfluidic devices helped by dry photoresist,” Sensors and Actuators a-Physical, vol. 223, pp. 76-83, Mar 2015.
[15] C. Lu, L. J. Lee, and Y. J. Juang, ”Packaging of microfluidic chips via interstitial bonding technique,” Electrophoresis, vol. 29, pp. 1407-14, Apr 2008.
[16] ”Topas_8007S-04 datasheet,” http://www.topas.com/sites/default/files/TDS_8007S-04_e_US.pdf, 2017.
[17] P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, ”Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010.
[18] ”Topas brochure cyclic olefin copolymer,” http://www.topas.com/sites/default/files/files/TOPAS_Brochure_E_2014_06%281%29.pdf, 2014.
[19] ”Zeonor cyclic olefin polymer datasheet,” http://www.zeon.co.jp/content/200181692.pdf, 2012.
[20] ”Topas general introduction,” https://www.polyplastics.com/en/product/lines/topas/general_e.pdf, 2015.
[21] ”Puratran cyclic block copolymer datasheet,” http://www.usife.com/USIWebFiles/Product/CBC-Puratran_en.pdf, 2016.
[22] N. Keller, T. M. Nargang, M. Runck, F. Kotz, A. Striegel, K. Sachsenheimer, et al., ”Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC,” Lab Chip, vol. 16, pp. 1561-4, Apr 26 2016.
[23] M. Laher and S. Hild, ”A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication,” RSC Advances, vol. 4, p. 5371, 2014.
[24] S. P. Ng, F. E. Wiria, and N. B. Tay, ”Low Distortion Solvent Bonding of Microfluidic Chips,” Procedia Engineering, vol. 141, pp. 130-137, 2016.
[25] ”Solubility Parameters_ Theory and Application,” http://cool.conservationus.org/coolaic/sg/bpg/annual/v03/bp0304.html, 2017.
[26] Y. H. T. Myra T. Koesdjojo, and Vincent T. Remcho, ”Fabrication of a Microfluidic System for Capillary Electrophoresis Using a Two-Stage Embossing Technique and Solvent Welding on Poly(methyl methacrylate) with Water as a Sacrificial Layer,” Analytical Chemistry, vol. 80, 2008.
[27] T. P. Ryan T. Kelly, and Adam T. Woolley, ”Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips,” Analytical Chemistry, vol. 77, 2005.
[28] Z. Gan, L. Zhang, and G. Chen, ”Solvent bonding of poly(methyl methacrylate) microfluidic chip using phase-changing agar hydrogel as a sacrificial layer,” Electrophoresis, vol. 32, pp. 3319-23, Nov 2011.
[29] D. Ogonczyk, J. Wegrzyn, P. Jankowski, B. Dabrowski, and P. Garstecki, ”Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip, vol. 10, pp. 1324-7, May 21 2010.
[30] I. R. G. Ogilvie, V. J. Sieben, C. F. A. Floquet, R. Zmijan, M. C. Mowlem, and H. Morgan, ”Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC,” Journal of Micromechanics and Microengineering, vol. 20, p. 065016, 2010.
[31] P.-C. Chen and L. H. Duong, ”Novel solvent bonding method for thermoplastic microfluidic chips,” Sensors and Actuators B: Chemical, vol. 237, pp. 556-562, 2016.
[32] M. Worgull, J. F. Hétu, K. K. Kabanemi, and M. Heckele, ”Hot embossing of microstructures: characterization of friction during demolding,” Microsystem Technologies, vol. 14, pp. 767-773, 2008.
[33] W. P. Maszara, G. Goetz, A. Caviglia, J. B. McKitterick, ”Bonding of silicon wafers for silicon-on-insulator,” journal of applied physics, vol. 64, 1988.
[34] Sylvia R. Scheicher / Katrin Krammer / Alexander Fian / Rupert Kargl / Volker Ribitsch / Stefan Köstler, ”Patterned Surface Activation of Cyclo-Olefin Polymers for Biochip Applications,” Periodica Polytechnica Chemical Engineering, vol. 58, p. 7, 2013. |