博碩士論文 104323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.224.73.157
姓名 宋程智(Cheng-Chih Sung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 定點銲接熱傳與應力分析在空調壓縮機組裝之應用
(Application of Thermal and Mechanical Analysis of Fixed-Point Welding on Air-Conditioning Compressor Assembly)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用有限元素法建立一套應用於家用空調迴轉式壓縮機缸體與外殼組裝銲接之電腦輔助工程分析技術。首先,利用兩平板單點銲接建立一套模擬固定銲接之有限元素分析模型,並透過實驗驗證模擬分析之結果,確認該有限元素分析模型之有效性之後,再進一步應用於模擬迴轉式壓縮機三點銲接,預測相關零件之溫度分佈、變形及殘留應力。
本研究探討兩種熱源輸入方式,平均熱源模型及高斯分佈熱源模型,發現平均熱源模型可獲得較佳之兩平板單點銲接溫度分析結果。有限元素分析模型計算求得之兩平板單點銲接的溫度分佈,與實驗量測結果比對,不管在溫度變化趨勢及溫度數值方面都相當吻合,因而確認有限元素分析模型的有效性。此外,在特定點所量測之應變變化趨勢及數值也都與模擬的預測值有一致性的吻合,再次確認本研究所發展之有限元素分析模型計算銲接過程應變及應力變化的有效性。計算結果發現單點固定銲接結束後,銲接核心區域承受徑向張應力及切線向張應力,熱影響區外的區域則殘留徑向壓應力及切線向張應力,由於部分高殘留應力區域之von-Mises等效應力接近材料之降伏強度值,預期塑性變形將會發生於這些區域。
為了確認銲接順序對迴轉式壓縮機缸體與外殼組裝銲接所產生之溫度及變形的影響,本研究進行了三點同步銲接及三點不同順序銲接之模擬分析,計算其溫度、變形及殘留應力分佈,並比較其差異性。目前已完成溫度分佈的模擬計算,模擬分析結果顯示,當第一個銲接孔為較靠近缸體葉片槽之點,可得到較平均之溫度分佈結果。
摘要(英)
The objective of this study is using finite element method (FEM) to develop a computer-aided-engineering (CAE) technique for application in the welding of pump cylinder and outer shell of a rotary compressor used in household air conditioning. In this study, an FEM model for single-point welding of two plates are firstly developed to simulate the fixed-point welding process. After validation by counterpart experiments, the FEM modeling is applied to simulate the three-point welding process in a rotary compressor and to predict the temperature distribution, deformation, and residual stress in relevant components.
Temperature distributions in the single-point welding of two plates are calculated by the FEM simulation and compared with the experimental measurements. A uniform heat flux model is proved to be better than the Gaussian-distribution heat flux model in predicting the temperature distribution for single-point welding of two plates. Simulation results of both temperature and strain variations at selected positions on the upper surface of the top plate show a good agreement with the experimental measurements. Variations of normal stress at the selected positions show a quarter symmetry, which also verifies the effectiveness of the FEM model developed for fixed-point welding. The filler region is subjected to tensile radial and hoop stresses after welding, while compressive radial stress and tensile hoop stress are present in the regions outside the HAZ. Plastic deformation might take place in the core of the HAZ as the calculated von-Mises equivalent stress is close to the yield strength of the material.
In the three-point welding of cylinder and outer shell, temperature variation around the vane groove region is influenced by the sequence of feeding the three filler holes. A more uniform temperature distribution is observed when the first feeding hole is close to the vane groove.
關鍵字(中) ★ 銲接
★ 溫度分佈
★ 殘留應力
關鍵字(英) ★ Welding
★ Temperature distribution
★ Residual stress
論文目次
LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 Components in a Rotary Compressor for Household Air Conditioning 1
1.2 Welding Technique 3
1.3 Temperature and Residual Stress Fields in Welding 4
1.4 Purpose 10
2. NUMERICAL SIMULATION 12
2.1 Numerical Simulation for Single-Point Welding of Two Plates 12
2.1.1 Finite element model and material properties 14
2.1.2 Heat source and boundary conditions 15
2.1.3 Element birth-and-death technique 17
2.2 Numerical Simulation for Three-Point Welding of Cylinder and Outer Shell 17
2.2.1 Finite element model and material properties 17
2.2.2 Heat source and boundary conditions 18
3. EXPERIMENT 20
3.1 Single-Point Welding 20
3.1.1 Experimental setup 20
3.1.2 Experimental procedures 20
4. RESULTS AND DISCUSSION 22
4.1 Temperature Distribution in Single-Point Welding of Two Plates 22
4.1.1 Simulation results 22
4.1.2 Experimental results 23
4.1.3 Comparison of simulation and experimental results 24
4.2 Stress and Strain Distributions in Single-Point Welding of Two Plates 25
4.2.1 Strain variations at selected positions 25
4.2.2 Stress distribution at selected positions 26
4.3 Simulation for Three-Point Welding of Cylinder and Outer Shell 27
4.3.1 Temperature Distribution 27
5. CONCLUSIONS 30
REFERENCES 32
TABLES 35
FIGURES 38
參考文獻

1. Willis Carrier, Wikipedia, https://en.wikipedia.org/wiki/Willis_Carrier, accessed on February 21, 2016
2. C. L. Yeh, Refrigeration and Air-condition Engineering, Sanmin Book Co., Taipei, Taiwan, 1991. ( In Chinese)
3. B. M. Johnson, B. C. Whitman, J. A. Tomczyk, and E. Silbersteinn, Refrigeration & Air Conditioning Technology, Delmar, New York, USA, 2013.
4. Rechi Co. Ltd., Internal Technical Data, 2016.
5. S. Kou, Welding Metallurgy, 2nd Edition, Wiley-Interscience, Hoboken, New Jersey, USA, 2003.
6. Y. Ueda, H. Murzkawa, and N. Ma, Welding Deformation and Residual Stress Prevention, Elsevier, Waltham, USA, 2012.
7. W. H. Minnick, “Weld Joints and Weld Types,” Chapter 6 in Gas Metal Arc Welding Handbook, 5th Edition, The Goodheart-Willcox Co., Tinley Park, Illinois , USA, 2007
8. N. N. Rykalin, Calculation of Heat Flow in Welding, translated by Z. Paley and C. M.Adams, Jr., Document 212-350-74, International Institute of Welding, London, UK, 1974.
9. S. Murugan, S. K. Rai, P. V. Kumar, T. Jayakumar, B. Raj, and M. S. C. Bose, “Temperature Distribution and Residual Stresses Due to Multipass Welding in Type 304 Stainless Steel and Low Carbon Steel Weld Pads,” International Journal of Pressure Vessels and Piping, Vol. 78, pp. 307-317, 2001.
10. S. K. Bate, D. Green, and D. Buttle, A Review of Residual Stress Distribution in Welded Joints for Defect Assessment of Offshore Structures, HSE Books, AEA Tech PLc, Liverpool, UK, 1997.
11. Q. Lin, J. Chen, and H. Chen, “Possibility of Inducing Compressive Residual Stresses in Welded Joints of SS400 Steels,” Journal of Material Science & Technology, Vol. 17, pp. 661-663, 2001.
12. Y. C. Lin and C. P. Chou, “Residual Stress Due to Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel,” Materials Science and Technology, Vol. 8, pp. 837-840, 2013.
13. C. Weisman, Welding Handbook : Fundamentals of Welding, 7th Edition, Vol. 1, American Welding Society, Miami, Florida, USA, 1976.
14. D. Rosenthal, “The Theory of Moving Sources of Heat and Its Application to Metal Treatments,” Transactions of the ASME, Vol. 68, pp. 849-866, 1946.
15. R. R. Rykalin, “Energy Sources in Welding,” Houdrement Lecture, International Institude of Welding, pp. 1-23, 1974.
16. V. Pavelic, R. Tanbakuchi, O. A. Uyehara, and P. S. Myers, “Experimental and Computed Temperature Histories in Gas Tungsten Arc Welding of Thin Plates,” Welding Journal Research Supplement, Vol. 48, pp. 295s-305s, 1969.
17. D. Radaj, “Welding Temperature Fields,” Chapter 2 in Heat Effect of Welding, Springer, Heidelberg, Germany, 1992.
18. J. Goldak, A. Chakravarti, and M. Bibby, “A New Finite Element Model for Welding Heat Sources,” Metallurgical Transactions B, Vol. 15, pp. 299-305, 1984.
19. A. M. Malik, E. M. Qureshi, N. Ullah Dar, and I. Khan, “Analysis of Circumferentially Arc Welded Thin-Walled Cylinders to Investigate the Residual Stress Fields,” Thin-Walled Structures, Vol. 46, pp. 1391-1401, 2008.
20. D. Deng and H. Murakawa, “Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements,” Computational Materials Science, Vol. 37, pp. 269-277, 2006.
21. Y. Ueda and T. Yamakawa, “Analysis of Thermal Elastic-Plastic Stress and Strain During Welding by Finite Element Method,” Transactions of the Japan Welding Society, Vol. 2, pp. 186-196, 1971.
22. X. K. Zhu and Y. J. Chao, “Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel,” Journal of Materials Processing Technology, Vol. 146, pp. 263-272, 2004.
23. A. Capriccioli and P. Frosi, “Multipurpose Ansys FE Procedure for Welding Processes Simulation,” Fusion Engineering and Design, Vol. 84, pp. 546-553, 2009.
24. D. Deng, Y. Zhou, T. Bi, and X. Liu, “Experimental and Numerical Investigations of Welding Distortion Induced by CO2 Gas Arc Welding in Thin-Plate Bead-on Joints,” Materials & Design, Vol. 52, pp. 720-729, 2013.
25. L. Ren, Y. Hu, L. Kong, J. Xu, “Analysis of Cylinder Welding Deformation in Compressor Using Finite Element Method,” National Engineering Research Center of Green Refrigeration Equipment, Vol. 32, pp.82-85, 2013. (In Chinese)
26. Y.-Z. Li, H. Lu, J. Chen, and L. Ren, “Welding Deformation Prediction and Structure Optimization of Air Conditioning Compressor Based on FEM,” Transactions of the China Welding Institution, Vol. 33, pp. 45-48, 2012. (In Chinese)
27. W. Xia, K. Wang, Z. Zeng, L. Xie, and F. Wu, “Three-Point Welding Analysis for Compressor Upper Flange with Different Structures,” Transactions of the China Welding Institution, Vol. 33, pp. 97-100, 2012. (In Chinese)
28. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Funamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, Inc., Hoboken, USA, 2011.
29. T. Bajpei, H. Chelladurai, and M. Z. Ansari, “Mitigation of Residual Stresses and Distortions in Thin Aluminium Alloy GMAW Plates Using Different Heat Sink Models,” Journal of Manufacturing Processes, Vol. 22, pp. 199-210, 2016.
30. M. Hashemzadeh, Y. Garbatov, and C. Soares, “Reduction in Weld Induced Distortions of Butt Welded Plates Subjected to Preventive Measures,” Chapter 66 in Analysis and Design of Marine Structures V, CRC Press, London, UK, 2015.
31. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermal Expansion: Metallic Elements and Alloys, IFI/Plenum, Wilmington, USA, 1975.
32. T. Z. Harmathy and W. W. Stanzak, ”Elevated-Temperature Tensile and Creep Properties of Some Structural and Prestressing Steels,” Fire Test Performance, ASTM STP 464, American Society for Testing and Materials, pp. 186-208, 1970.
33. P. R. F. Teixeira, D. B. d. Araújo, and L. A. B. d. Cunha, “Study of the Gaussian Distribution Heat Source Model Applied to Numerical Thermal Simulations of TIG Welding Processes,” Science & Engineering Journal, Vol. 23, pp. 115-122, 2014.
34. Gray Cast Iron, Winson Machinery Casting Co. Ltd., http://www.wsmc.com.tw/specification.php, accessed on June 6, 2017.
35. Hot-Rolled Products, China Steel Corporation, http://www.csc.com.tw/csc_e/pd/doc/spec_hr_e_2014.pdf, accessed on June 6, 2017.
36. J. J. Valencia and P. N. Quested, “Thermophysical Properties,” ASM Handbook Vol 15 Casting, ASM International, Materials Park, USA, 2008.
37. K.-Y. Chen, “Analysis of High-Tempeature Mechanical Properties for the Materials of Rotary Compressor,” Technical Report for Research Project Funded by Rechi Co. Ltd., National Central University, 2015.
38. F. Cverna, “Thermal Expansion,” Chapter 2 in Thermal Properties of Metals, ASM International, Materials Park, USA, 2002.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明