博碩士論文 104323020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.227.49.73
姓名 施宣豪(Hsuan-Hao Shih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射熔融製程熱傳與應力分析
(Thermal and Mechanical Analysis of Laser Melting Process)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雷射積層製造以雷射熔融材料之方式,將材料熔融並固化於基板上,配合雷射路徑及材料充填之設定,逐步疊加材料並形成成品。然而,雷射使用上,功率高且作用範圍極小,造成材料在短時間內迅速加熱及冷卻,導致雷射積層工件之不均勻膨脹及收縮,過程之熱應力及冷卻後之殘留應力相繼出現,進而降低成品使用之功效。本研究仍目的仍在建立有限元素分析模型模擬金屬粉末積層製造過程,並分析成品中由溫度變化導致之熱應力及殘留應力分佈,並以改變雷射加工參數,如雷射移動速度及軌跡,降低殘留應力之大小。為建立有效之雷射熔融製程有限元素分析模型,本研究循序漸進地發展定點雷射照射、移動式雷射照射及多層粉末雷射熔融製程之熱傳及結構分析模型。並規劃對應之實驗驗證,確認有限元素分析模型之有效性,分別進行單點雷射照射及移動式雷射照射實驗,過程以熱電耦及應變規分別量測觀測點處之溫度及應變變化,並與相對應之模擬結果比較。
在實驗驗證中,分別以30 W的CO2、50及80 W的光纖雷射進行單點照射鋼板之實驗,續以30 W的CO2及80 W光纖雷射進行移動式照射。在單點照射實驗中,以CO2及50 W的光纖雷射分別照射基板,觀測點之溫度變化與模擬結果吻合。而以80 W的光纖雷射進行時,可以發現多次實驗的結果,彼此間存在些許差異,不過,模擬結果與各實驗結果之趨勢仍然接近。在移動式照射實驗中,以CO2及80 W光纖雷射照射基板,量測點溫度變化與模擬結果有一致性地吻合。在以80 W光纖雷射移動照射基板的應變量測中,其模擬中在觀測點上應變的變化與實驗量測數據趨勢相符。
在多層雷射積層製造之模擬中,觀察溫度及應力分佈之結果可以發現,在雷射照射之區域中,照射點本身呈現同心圓之溫度分佈,由於雷射移動之故,移動路徑上之溫度分佈也帶有尾翼,且沿雷射軌跡方向之溫度梯度明顯較大。在積層物件上表面之正向應力分佈中,可以發現材料熔融後受到壓應力之現象,隨著熱源移開且溫度開始下降後,該區域變為承受張應力並且形成殘留應力,且受溫度梯度之影響,沿雷射軌跡方向之殘留正向應力也較大。而觀察沿雷射軌跡方向縱剖面之應力分佈狀況,發現當增加積層層數,其殘留應力也會增加,另外,較大數值之von-Mises等效應力出現在積層物件中,以及接近積層區域的基板上,此較大之殘留應力出現於積層成品中,將會影響積層製造成品結構的精確度及工件使用強度。在不同的雷射參數比較中,積層材料受雷射參數影響導致最高溫度在各個比較項目中有所差異,而造成應力分佈大小改變。在以S型軌跡進行雷射加工之殘留應力,比使用單一雷射方向加工之應力小。在不同的雷射速率比較中,以較低之雷射移動速率進行之殘留應力較大。
摘要(英)
The aim of this study is using finite element method (FEM) to develop a computer-aided-engineering (CAE) technique for application in simulation of various laser processes, such as fixed-point irradiation, moving irradiation, and multilayer powder deposition. Thermal and mechanical analyses are conducted through FEM modeling to calculate the distributions of temperature and stress in various laser processes. Experiments, including fixed-point laser irradiation and line segment of laser irradiation are conducted to validate the FEM models developed in this study. Furthermore, effects of laser processing parameters, such laser scanning speed and laser scanning strategies, are analyzed to find a proper process window for laser additive manufacturing (LAM) in making a build with low residual stress.
In validating experiments, CO2 laser of 30 W and fiber laser of 50 W and 80 W are employed for fixed-point irradiation, while CO2 laser of 30 W and fiber laser of 80 W are used in line segment irradiation. The temperature and strain variations at selected points are measured by thermocouples and strain gages in experiment and are compared with the FEM simulations. For fixed-point laser irradiation with a 30-W CO2 laser or a 50-W fiber laser, temperature histories at measurement points concur with the simulation results. Scattering of temperature data is observed in the fixed-point irradiation tests using an 80-W fiber laser, but the temperature changes at selected positions in simulation still have a fair agreement with experimental measurements. For a line segment irradiation, the temperature variations at selected points in experiment using a 30-W CO2 laser or an 80-W fiber laser agree well with the simulations. For strain measurement in a line segment irradiation by 80-W fiber laser, the strain variation at each measurement point in simulation shows a fair agreement with the experimental results.
Simulation of thermal-to-structural changes in a multilayer powder deposition is also performed. A concentric temperature distribution is observed at the location irradiated by laser on the top surface of the build. For moving laser irradiation, a tail-shape temperature distribution is found and the temperature gradient along the laser scanning direction is extremely large. Compressive stress is induced at the region right after irradiating by the laser beam, and this local stress becomes tensile one when the irradiated area cools down. As the temperature gradient along the direction of moving laser is quiet large, the residual normal stress in this direction is much larger than that in the transverse direction. Distribution of von-Mises equivalent stress indicates that residual stress increases with increasing number of deposited layers. In addition, highly residual stresses are present in the build and at the base nearby the interface between the build and base. Such residual stress may have a detrimental effect on the structural robustness and integrity of the build made by LAM. The maximum temperature during LAM process and induced residual stress are affected by several laser processing parameters. The residual stress in the scanning path of an “S” pattern is smaller than that in a unidirectional path. The residual stress in the build and base increases with a decrease in the laser scanning speed.
關鍵字(中) ★ 雷射熔融
★ 溫度分佈
★ 應力分佈
關鍵字(英) ★ Laser melting
★ Temperature distribution
★ Stress distribution
論文目次
LIST OF TABLES VIII
LIST OF FIGURE IX
1. INTRODUCTION 1
1.1 Laser Additive Manufacturing 1
1.2 Directed Metal Deposition and Selective Laser Sintering/Melting 2
1.3 Effects of Processing Parameters in LAM 5
1.4 Temperature and Stress Field 6
1.5 Analysis of Residual Stress in LAM Process by Finite Element Method 10
1.6 Purpose 12
2. FINITE ELEMENT MODEL 14
2.1 Assumption 14
2.2 Thermal Analysis 14
2.3 Mechanical Analysis 16
2.4 Birth and Death Technique 16
2.5 Material Properties 17
2.5.1 Materials 17
2.5.2 Thermal and mechanical properties 17
2.5.3 Properties of powder material 18
2.6 Model Description 19
2.6.1 Models for laser irradiation simulation 19
2.6.2 Model of multilayer powder deposition 21
3. EXPERIMENT 23
4. RESULTS AND DISCUSSION 24
4.1 Comparison of Numerical and Experimental Results 24
4.1.1 Laser irradiation by CO2 laser 24
4.1.2 Laser irradiation by fiber laser 25
4.2 Temperature and stress distributions in multilayer powder deposition 28
4.3 Effect of Laser Scanning Strategy 31
4.4 Effect of Laser Scanning Speed 34
5. CONCLUSIONS 36
REFERENCES 38
TABLES 43
FIGURES 46
參考文獻
1. M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang, “Multiple Material Additive Manufacturing – Part 1: A Review,” Virtual and Physical Prototyping, Vol. 8, pp. 19-50, 2013.
2. M. F. Zaeh and G. Branner, “Investigations on Residual Stresses and Deformations in Selective Laser Melting,” Production Engineering, Vol. 4, pp. 35-45, 2009.
3. M. Duocastella and C. B. Arnold, “Bessel and Annular Beams for Materials Processing,” Laser & Photonics Reviews, Vol. 6, pp. 607-621, 2012.
4. A. J. Dunbar, E. R. Denlinger, J. Heigel, P. Michaleris, P. Guerrier, R. Martukanitz, and T. W. Simpson, “Development of Experimental Method for in Situ Distortion and Temperature Measurements During the Laser Powder Bed Fusion Additive Manufacturing Process,” Additive Manufacturing, Vol. 12, pp. 25-30, 2016.
5. H. M. Chae, “A Numerical and Experimental Study for Residual Stress Evolution in Low Alloy Steel During Laser Aided Additive Manufacturing Process,” Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, USA, 2013.
6. D. Gu, “Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms,” Chapter 2 in Laser Additive Manufacturing of High-Performance Materials, Springer, Berlin, Germany, 2015.
7. R. P. Mudge and N. R. Wald, “Laser Engineered Net Shaping Advances Additive Manufacturing and Repair,” Welding Journal, Vol. 86, pp. 44-48, 2007.
8. A. Simchi and H. Pohl, “Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder,” Materials Science and Engineering: A, Vol. 359, pp. 119-128, 2003.
9. M. Brandt, “Powder Bed Fusion Processes: an Overview,” Chapter 2 in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Elsevier, London, UK, 2017.
10. P. Mercelis and J. P. Kruth, “Residual Stresses in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping Journal, Vol. 12, pp. 254-265, 2006.
11. J. P. Kruth, P. Mercelis, J. V. Vaerenbergh, and M. Rombouts, “Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping Journal, Vol. 11, pp. 26-36, 2005.
12. Y. Li and D. Gu, “Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder,” Materials & Design, Vol. 63, pp. 856-867, 2014.
13. R. Li, Y. Shi, J. Liu, H. Yao, and W. Zhang, “Effects of Processing Parameters on the Temperature Filed of Selective Laser Melting Metal Powder,” Powder Metallurgy and Metal Ceramics, Vol. 48, pp. 186-195, 2009.
14. P. Yuan and D. Gu, “Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10Mg Nanocomposites: Simulation and Experiments,” Journal of Physics D: Applied Physics, Vol. 48, pp. 035303-035318, 2015.
15. J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, and D. Zuo, “Simulation of Temperature Distribution in Single Metallic Powder Layer for Laser Micro-Sintering,” Computational Materials Science, Vol. 53, pp. 333-339, 2012.
16. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single Track Formation in Selective Laser Melting of Metal Powders,” Journal of Materials Processing Technology, Vol. 210, pp. 1624-1631, 2010.
17. E. Assuncao and S. Williams, “Comparison of Continuous Wave and Pulsed Wave Laser Welding Effects,” Optics and Lasers in Engineering, Vol. 51, pp. 674-680, 2013.
18. Y. Li and D. Gu, “Thermal Behavior During Selective Laser Melting of Commercially Pure Titanium Powder: Numerical Simulation and Experimental Study,” Additive Manufacturing, Vol. 1-4, pp. 99-109, 2014.
19. W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and S. S. Babu, “The Metallurgy and Processing Science of Metal Additive Manufacturing,” International Materials Reviews, Vol. 61, pp. 315-360, 2016.
20. I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors, “A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing,” International Journal of Machine Tools and Manufacture, Vol. 49, pp. 916-923, 2009.
21. T. Mukherjee, W. Zhang, and T. DebRoy, “An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing,” Computational Materials Science, Vol. 126, pp. 360-372, 2017.
22. K. Dai and L. Shaw, “Thermal and Mechanical Finite Element Modeling of Laser Forming from Metal and Ceramic Powders,” Acta Materialia, Vol. 52, pp. 69-80, 2004.
23. M. Alimardani, E. Toyserkani, J. P. Huissoon, and C. P. Paul, “On the Delamination and Crack Formation in a Thin Wall Fabricated Using Laser Solid Freeform Fabrication Process: An Experimental–Numerical Investigation,” Optics and Lasers in Engineering, Vol. 47, pp. 1160-1168, 2009.
24. F. Brückner, D. Lepski, and E. Beyer, “Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding,” Journal of Thermal Spray Technology, Vol. 16, pp. 355-373, 2007.
25. V. Manvatkar, A. De, and T. DebRoy, “Spatial Variation of Melt Pool Geometry, Peak Temperature and Solidification Parameters During Laser Assisted Additive Manufacturing Process,” Materials Science and Technology, Vol. 31, pp. 924-930, 2014.
26. K. Dai and L. Shaw, “Parametric Studies of Multi-Material Laser Densification,” Materials Science and Engineering: A, Vol. 430, pp. 221-229, 2006.
27. L. Ma and H. Bin, “Temperature and Stress Analysis and Simulation in Fractal Scanning-Based Laser Sintering,” The International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 898-903, 2007.
28. J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective Laser Melting of Iron-Based Powder,” Journal of Materials Processing Technology, Vol. 149, pp. 616-622, 2004.
29. J. P. Kruth, J. Deckers, E. Yasa, and R. Wauthle, “Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 226, pp. 980-991, 2012.
30. K. Dai and L. Shaw, “Preheating Effects on Multiple Material Laser Densification,” In: Proceedings of SFF Symposium, The University of Texas at Austin, Austin, ,Texas, USA, 2002.
31. P. Aggarangsi and J. Beuth, “Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing,” In: Proceedings of SFF Symposium, The University of Texas at Austin, Austin, Texas, USA, 2006.
32. R. Jendrzejewski and G. Śliwiński, “Investigation of Temperature and Stress Fields in Laser Cladded Coatings,” Applied Surface Science, Vol. 254, pp. 921-925, 2007.
33. B. Schoinochoritis, D. Chantzis, and K. Salonitis, “Simulation of Metallic Powder Bed Additive Manufacturing Processes with the Finite Element Method: A Critical Review,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 231, pp. 96-117, 2015.
34. Q. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu, and A. C. To, “Finite Element Modeling and Validation of Thermomechanical Behavior of Ti-6Al-4V in Directed Energy Deposition Additive Manufacturing,” Additive Manufacturing, Vol. 12, pp. 169-177, 2016.
35. S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, “3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process,” International Journal of Machine Tools and Manufacture, Vol. 44, pp. 117-123, 2004.
36. T. Amine, J. W. Newkirk, and F. Liou, “Investigation of Effect of Process Parameters on Multilayer Builds by Direct Metal Deposition,” Applied Thermal Engineering, Vol. 73, pp. 500-511, 2014.
37. J. C. Heigel, P. Michaleris, and E. W. Reutzel, “Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V,” Additive Manufacturing, Vol. 5, pp. 9-19, 2015.
38. K. Shah, H. Izhar Ul, S. A. Shah, F. U. Khan, M. T. Khan, and S. Khan, “Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters,” Scientific World Journal, Vol. 2014, pp. 84154901-84154906, 2014.
39. J. Cao, M. A. Gharghouri, and P. Nash, “Finite-Element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates,” Journal of Materials Processing Technology, Vol. 237, pp. 409-419, 2016.
40. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, UK, Chapter 1, 1959.
41. M. Labudovic, D. Hu, and R. Kovacevic, “A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping,” Journal of Materials Science, Vol. 38, pp. 35-49, 2003.
42. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermal Expansion: Metallic Elements and Alloys, IFI/Plenum, Wilmington, USA, 1975.
43. K. C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK, 2002.
44. Military Handbook - MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures, U.S. Department of Defense, 1998.
45. An Overview of Fire Protection in Buildings, FEMA, www.fema.gov/pdf/library/fema403_apa.pdf, accessed on May 26, 2017.
46. K. Dai and L. Shaw, “Thermal and Stress Modeling of Multi-Material Laser Processing,” Acta Materialia, Vol. 49, pp. 4171-4181, 2001.
47. I. A. Roberts, “Investigation of Residual Stresses in the Laser Melting of Metal Powders in Additive Layer Manufacturing,” Ph.D. Thesis, University of Wolverhampton, Wolverhampton, UK, 2012.
48. I. Shishkovsky, I. Yadroitsev, and I. Smurov, “Direct Selective Laser Melting of Nitinol Powder,” Physics Procedia, Vol. 39, pp. 447-454, 2012.
49. F. Thummler and R. Oberacker, Introduction to Powder Metallurgy, The University Press, Cambridge, UK, 1993.
50. M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, “Light Extinction in Metallic Powder Beds: Correlation with Powder Structure,” Journal of Applied Physics, Vol. 98, pp. 01353301-01353309, 2005.
51. J. Xie and A. Kar, “Laser Welding of Thin Sheet Steel with Surface Oxidation,” Welding Journal, Vol. 1999, pp. 343-348, 1999.
52. K. C. Lee, W. K. Baek, H. J. Kwon, A. B. Gojani, J. J. Yoh, “Modeling of Thermal Penetration of 1.07 μm Continuous Wave Beam with Target Absorptivity Corrections,” in 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, 2011.
53. H. Zamani, J.-P. Hermani, B. Sonderegger, and C. Sommitsch, “3D Simulation and Process Optimization of Laser Assisted Milling of Ti6Al4V,” Procedia CIRP, Vol. 8, pp. 75-80, 2013.
54. N. K. Tolochko, T. Laoui, Y. V. Khlopkov, S. E. Mozzharov, V. I. Titov, and M. B. Ignatiev, “Absorptance of Powder Materials Suitable for Laser Sintering,” Rapid Prototyping Journal, Vol. 6, pp. 155-161, 2000.
55. J. E. Pope, Rules of Thumb for Mechanical Engineers, Gulf Professional Publishing, Houston, USA, 1996.
56. M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.-H. Nadal, B. Wilthan, and G. Pottlacher, “Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy,” International Journal of Thermophysics, Vol. 27, pp. 507-529, 2006.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明