參考文獻 |
Abdulhamid, H., Fridell, E. and Skoglundh, M. (2004). ”Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NOx in a Pt/BaO/Al2O3 model catalyst.” Topics in Catalysis 30(1-4): 161-168.
Adamson, A. W. and Gast, A. P. (1967). ”Physical chemistry of surfaces.” Wiley-Interscience; 6th edition.
Bai, Z., Zhang, Z., Chen, B., Zhao, Q., Crocker, M. and Shi, C. (2017). ”Non-thermal plasma enhanced NSR performance over Pt/M/Ba/Al2O3 (M = Mn, Co, Cu) catalysts.” Chemical Engineering Journal 314: 688-699.
Bebar, L., Kermes, V., Stehlik, P., Canek, J. and Oral, J. (2002). ”Low NOx burners-prediction of emissions concentration based on design, measurements and modelling.” Waste Management 22(4): 443-451.
Bhatia, D., McCabe, R. W., Harold, M. P. and Balakotaiah, V. (2009). ”Experimental and kinetic study of NO oxidation on model Pt catalysts.” Journal of Catalysis 266(1): 106-119.
Burch, R., Breen, J. P. and Meunier, F. C. (2002). ”A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts.” Applied Catalysis B: Environmental 39(4): 283-303.
Burch, R., Millington, P. J. and Walker, A. P. (1994). ”Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen.” Applied Catalysis B: Environmental 4(1): 65-94.
Cant, N. W. and Patterson, M. J. (2002). ”The storage of nitrogen oxides on alumina-supported barium oxide.” Catalysis Today 73(3–4): 271-278.
Chang, J. S., Lawless, P. A. and Yamamoto, T. (1991a). ”Corona discharge processes.” IEEE Transactions on Plasma Science 19(6): 1152-1166.
Chang, M. B., Balbach, J. H., Rood, M. J. and Kushner, M. J. (1991b). ”Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis.” Journal of Applied Physics 69(8): 4409-4417.
Chen, X., Schwank, J., Li, J., Schneider, W. F., Goralski Jr, C. T. and Schmitz, P. J. (2005). ”Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials.” Applied Catalysis B: Environmental 61(1–2): 164-175.
Chen, Z., Wang, X., Wang, Y. and Wang, R. (2015). ”Pt–Ru/Ba/Al2O3–Ce0.33Zr0.67O2: An effective catalyst for NOx storage and reduction.” Journal of Molecular Catalysis A: Chemical 396: 8-14.
Cheng, X., Zhang, X., Zhang, M., Sun, P., Wang, Z. and Ma, C. (2017). ”A simulated rotary reactor for NOx reduction by carbon monoxide over Fe/ZSM-5 catalysts.” Chemical Engineering Journal 307: 24-40.
Chiang, Y. C., Chiang, P. C. and Huang, C. P. (2001). ”Effects of pore structure and temperature on VOC adsorption on activated carbon.” Carbon 39(4): 523-534.
Dong, F., Suda, A., Tanabe, T., Nagai, Y., Sobukawa, H., Shinjoh, H., Sugiura, M., Descorme, C. and Duprez, D. (2004). ”Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2–ZrO2.” Catalysis Today 93–95: 827-832.
Eliasson, B., Hirth, M. and Kogelschatz, U. (1987). ”Ozone synthesis from oxygen in dielectric barrier discharges.” Journal of Physics D: Applied Physics 20(11): 1421.
Epling, W. S., Campbell, L. E., Yezerets, A., Currier, N. W. and Parks, J. E. (2004a). ”Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts.” Catalysis Reviews 46(2): 163-245.
Epling, W. S., Parks, J. E., Campbell, G. C., Yezerets, A., Currier, N. W. and Campbell, L. E. (2004b). ”Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts.” Catalysis Today 96(1–2): 21-30.
Epling, W. S., Peden, C. H. and Szanyi, J. (2008). ”Carbonate formation and stability on a Pt/BaO/γ-Al2O3 NOx storage/reduction catalyst.” The Journal of Physical Chemistry C 112(29): 10952-10959.
Erkfeldt, S., Jobson, E. and Larsson, M. (2001). ”The effect of carbon monoxide and hydrocarbons on NOx storage at low temperature.” Topics in Catalysis 16(1): 127-131.
Forzatti, P., Castoldi, L., Nova, I., Lietti, L. and Tronconi, E. (2006). ”NOx removal catalysis under lean conditions.” Catalysis Today 117(1–3): 316-320.
Fridell, E., Skoglundh, M., Westerberg, B., Johansson, S. and Smedler, G. (1999). ”NOx storage in barium-containing catalysts.” Journal of Catalysis 183(2): 196-209.
Goldschmidt, V. M. (1926). ”Die gesetze der krystallochemie.” Naturwissenschaften 14(21): 477-485.
Gregg, S. J., Sing, K. S. W. and Salzberg, H. (1967). ”Adsorption surface area and porosity.” Journal of the Electrochemical Society 114(11): 279C-279C.
Hase, K. and Kori, Y. (1996). ”Effect of premixing of fuel gas and air on NOx formation.” Fuel 75(13): 1509-1514.
Hodjati, S., Bernhardt, P., Petit, C., Pitchon, V. and Kiennemann, A. (1998). ”Removal of NOx: Part I. Sorption/desorption processes on barium aluminate.” Applied Catalysis B: Environmental 19(3–4): 209-219.
Hodjati, S., Vaezzadeh, K., Petit, C., Pitchon, V. and Kiennemann, A. (2000). ”Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas.” Applied Catalysis B: Environmental 26(1): 5-16.
Kašpar, J., Fornasiero, P. and Hickey, N. (2003). ”Automotive catalytic converters: Current status and some perspectives.” Catalysis Today 77(4): 419-449.
Kim, C. H., Qi, G., Dahlberg, K. and Li, W. (2010). ”Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust.” Science 327(5973): 1624-1627.
Kogelschatz, U., Eliasson, B. and Hirth, M. (1988). ”Ozone generation from oxygen and air: discharge physics and reaction mechanisms.” Ozone: Science & Engineering 10 (4): 367-377.
Le Phuc, N., Courtois, X., Can, F., Royer, S., Marecot, P. and Duprez, D. (2011). ”NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO (Fe, Mn, Ce)/Al2O3 model catalysts. Part II: Influence of Ce and Mn–Ce addition.” Applied Catalysis B: Environmental 102(3–4): 362-371.
Lê, P. N., Corbos, E. C., Courtois, X., Can, F., Royer, S., Marecot, P. and Duprez, D. (2009). ”Influence of Mn and Fe addition on the NOx storage–reduction properties and SO2 poisoning of a Pt/Ba/Al2O3 model catalyst.” Topics in Catalysis 52(13): 1771.
Li, J., Goh, W. H., Yang, X. and Yang, R. T. (2009). ”Non-thermal plasma-assisted catalytic NOx storage over Pt/Ba/Al2O3 at low temperatures.” Applied Catalysis B: Environmental 90(3–4): 360-367.
Li, Q., Meng, M., Dai, F., Zha, Y., Xie, Y., Hu, T. and Zhang, J. (2012a). ”Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal.” Chemical Engineering Journal 184: 106-112.
Li, X. G., Dong, Y. H. and Xian, H. (2011). ”De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites.” Energy & Environmental Sicence 4: 3351.
Li, Z., Meng, M., Zha, Y., Dai, F., Hu, T., Xie, Y. and Zhang, J. (2012b). ”Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal.” Applied Catalysis B: Environmental 121–122: 65-74.
Liu, G. and Gao, P.-X. (2011). ”A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies.” Catalysis Science & Technology 1: 552-568.
López-Suárez, F. E., Illán-Gómez, M. J., Bueno-López, A. and Anderson, J. A. (2011). ”NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS.” Applied Catalysis B: Environmental 104(3–4): 261-267.
Mahzoul, H., Gilot, P., Brilhac, J.-F. and Stanmore, B. R. (2001). ”Reduction of NOx over a NOx-trap catalyst and the regeneration behaviour of adsorbed SO2.” Topics in Catalysis 16(1): 293-298.
Matsumoto, S. I. (2000). ”Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst.” CATTECH 4(2): 102-109.
Miller, J. A. and Bowman, C. T. (1989). ”Mechanism and modeling of nitrogen chemistry in combustion.” Progress in Energy and Combustion Science 15(4): 287-338.
Pan, K. L., Chen, D. L., Pan, G. T., Chong, S. and Chang, M. B. (2017). ”Removal of phenol from gas streams via combined plasma catalysis.” Journal of Industrial and Engineering Chemistry 52: 108-120.
Pauleta, S. R., Dell’Acqua, S. and Moura, I. (2013). ”Nitrous oxide reductase.” Coordination Chemistry Reviews 257(2): 332-349.
Peng, H. H., Pan, K. L., Yu, S. J., Yan, S. Y. and Chang, M. B. (2016). ”Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.” Environmental Science and Pollution Research 23(19): 19590-19601.
Phil, H. H., Reddy, M. P., Kumar, P. A., Ju, L. K. and Hyo, J. S. (2008). ”SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures.” Applied Catalysis B: Environmental 78(3–4): 301-308.
Prathap, C., Ray, A. and Ravi, M. R. (2008). ”Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition.” Combustion and Flame 155(1): 145-160.
Raizer, Y. P. and Allen, J. E. (1997). Gas discharge physics, Springer Berlin.
Rico-Pérez, V., Bueno-López, A., Kim, D. J., Ji, Y. and Crocker, M. (2015). ”Pt/CexPr1−xO2 (x = 1 or 0.9) NOx storage–reduction (NSR) catalysts.” Applied Catalysis B: Environmental 163: 313-322.
Riess, J. (1998). ”NOx : how nitrogen oxides affect the way we live and breathe.” US Environmental Protection Agency, Office of Air Quality Planning and Standards.
Roy, S. and Baiker, A. (2009). ”NOx storage reduction catalysis: From mechanism and materials properties to storage reduction performance.” Chemical Reviews 109(9): 4054-4091.
Sardja, I. and Dhali, S. (1990). ”Plasma oxidation of SO2.” Applied Physics Letters 56(1): 21-23.
Shi, C., Zhang, Z. s., Crocker, M., Xu, L., Wang, C. y., Au, C. and Zhu, A. m. (2013). ”Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst.” Catalysis Today 211: 96-103.
Skalska, K., Miller, J. S. and Ledakowicz, S. (2010). ”Trends in NOx abatement: A review.” Science of The Total Environment 408(19): 3976-3989.
Smeltz, A. D., Getman, R. B., Schneider, W. F. and Ribeiro, F. H. (2008). ”Coupled theoretical and experimental analysis of surface coverage effects in Pt-catalyzed NO and O2 reaction to NO2 on Pt(1 1 1).” Catalysis Today 136(1–2): 84-92.
Szailer, T., Kwak, J. H., Kim, D. H., Hanson, J. C., Peden, C. H. F. and Szanyi, J. (2006). ”Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO.” Journal of Catalysis 239(1): 51-64.
Takahashi, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S. I., Tanizawa, T., Tanaka, T., Tateishi, S. S. and Kasahara, K. (1996). ”The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst.” Catalysis Today 27(1): 63-69.
Toshiaki, Y. (2003). ”Performance evaluation of nonthermal plasma reactors for NO oxidation in diesel engine exhaust gas treatment.” IEEE Transactions on Industry Applications 39.
Treybal, R. E. (1980). ”Mass transfer operations.” New York.
Van, D. R. (1999). ”Best available techniques to reduce emissions from refineries - air.” Concawe: 17-26.
Vijay, R., Hendershot, R. J., Rivera-Jiménez, S. M., Rogers, W. B., Feist, B. J., Snively, C. M. and Lauterbach, J. (2005). ”Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation.” Catalysis Communications 6(2): 167-171.
Waibel, R. T., Nickeson, D., Radak, L. and Boyd, W. (1986). ”Fuel staging burners for NOx control ” ASM Symposium on Industrial Combustion Technologies.
Wang, X., Chen, Z., Luo, Y., Jiang, L. and Wang, R. (2013). ”Cu/Ba/bauxite: an inexpensive and efficient alternative for Pt/Ba/Al2O3 in NOx removal.” Scientific reports 3: 1559.
Wang, X., Yu, Y. and He, H. (2010). ”Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction.” Applied Catalysis B: Environmental 100(1–2): 19-30.
Westerberg, B. and Fridell, E. (2001). ”A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system.” Journal of Molecular Catalysis A: Chemical 165(1–2): 249-263.
Xiao, J., Li, X., Deng, S., Wang, F. and Wang, L. (2008). ”NOx storage-reduction over combined catalyst Mn/Ba/Al2O3–Pt/Ba/Al2O3.” Catalysis Communications 9(5): 563-567.
Xu, J., Harold, M. P. and Balakotaiah, V. (2009). ”Microkinetic modeling of steady-state NO/H2/O2 on Pt/BaO/Al2O3 NOx storage and reduction monolith catalysts.” Applied Catalysis B: Environmental 89(1–2): 73-86.
Yamazaki, K., Suzuki, T., Takahashi, N., Yokota, K. and Sugiura, M. (2001). ”Effect of the addition of transition metals to Pt/Ba/Al2O3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO2.” Applied Catalysis B: Environmental 30(3–4): 459-468.
You, R., Zhang, Y., Liu, D., Meng, M., Jiang, Z., Zhang, S. and Huang, Y. (2015). ”A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component.” Chemical Engineering Journal 260: 357-367.
Yu, Q., Wang, H., Liu, T., Xiao, L., Jiang, X. and Zheng, X. (2012). ”High-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process.” Environmental Science & Technology 46(4): 2337-2344.
Yuan.J.J (1999). ”Prediction of NOx emissions in recovery boilers - an introduction to NOx module.” Process Simulations Ltd.
Zeldovich, Y. B (1946). ”The oxidation of nitrogen in combustion and explosions.” Acta physicochimica U.R.S.S. 21: 577-628.
Zhang, Z., Chen, B. b., Wang, X. k., Xu, L., Au, C., Shi, C. and Crocker, M. (2015a). ”NOx storage and reduction properties of model manganese-based lean NOx trap catalysts.” Applied Catalysis B: Environmental 165: 232-244.
Zhang, Z., Crocker, M., Chen, B., Bai, Z., Wang, X. and Shi, C. (2015b). ”Pt-free, non-thermal plasma-assisted NOx storage and reduction over M/Ba/Al2O3 (M = Mn, Fe, Co, Ni, Cu) catalysts.” Catalysis Today 256, Part 1: 115-123.
Zhang, Z., Crocker, M., Chen, B., Wang, X., Bai, Z. and Shi, C. (2015c). ”Non-thermal plasma-assisted NOx storage and reduction over cobalt-containing LNT catalysts.” Catalysis Today 258, Part 2: 386-395.
Zhu, J. and Thomas, A. (2009). ”Perovskite-type mixed oxides as catalytic material for NO removal.” Applied Catalysis B: Environmental 92(3–4): 225-233.
李公哲 (2002). ”環境工程.” 茂昌圖書有限公司,: 370-383.
李灝銘 (2001). ”以低溫電漿去除揮發性有機物之研究.” 博士論文 國立中央大學環境工程研究所.
蔣本基 (1996). ”活性碳物理化學特性對VOCs吸附之影響.” 工業污染防治 58.
詹德隆 (1998). ”鍋爐燃料與燃燒.” 67-87. |