參考文獻 |
Alexander, M. V., and J. J. Rosentreter, 2008, Photocatalytic oxidation of aqueous trichloroethylene using dye sensitized buoyant photocatalyst monitored via micro-headspace solid-phase microextration gas chromatography/electron capture detection and mass spectrometry: Microchemical Journal, v. 88, p. 38-44.
Bak, S. A., M. S. Song, I. T. Nam, and W. G. Lee, 2015, Photocatalytic oxidation of trichloroethylene in water using a porous ball of nano-ZnO and nanoclay composite: Journal of Nanomaterials, v. 16, p. 8.
Behnajady, M. A., N. Modirshahla, and R. Hamzavi, 2006, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst: Journal of Hazardous Materials, v. 133, p. 226-232.
Bob, M. M., M. C. Brooks, S. C. Mravik, and A. L. Wood, 2008, A modified light transmission visualization method for DNAPL saturation measurements in 2-D models: Advances in Water Resources, v. 31, p. 727-742.
Chao, K. P., S. K. Ong, T. Fryzek, W. Yuan, and W. Braida, 2012, Degradation of trichloroethylene using iron, bimetals and trimetals: Journal of Environmental Science and Health, Part A, v. 47, p. 1536-1542.
Chong, M. N., B. Jin, C. W. K. Chow, and C. Saint, 2010, Recent developments in photocatalytic water treatment technology: A review: Water Research, v. 44, p. 2997-3027.
Cundall, R. B., R. Rudham, and M. S. Salim, 1976, Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile: Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, v. 72, p. 1642-1651.
Dobaradaran, S., H. Lutze, A. H. Mahvi, and T. C. Schmidt, 2014, Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations: Journal of Environmental Health Science and Engineering, v. 12.
Farooq, M., I. A. Raja, and A. Pervez, 2009, Photocatalytic degradation of TCE in water using TiO2 catalyst: Solar Energy, v. 83, p. 1527-1533.
He, F., D. Zhao, J. Liu, and C. B. Roberts, 2007, Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater: Industrial & Engineering Chemistry Research, v. 46, p. 29-34.
Hu, R., C. Li, X. Wang, Y. Sun, H. Jia, H. Su, and Y. Zhang, 2012, Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light: Catalysis Communications, v. 29, p. 35-39.
Hung, C. H., and B. J. Mariñas, 1997, Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films: Environmental Science & Technology, v. 31, p. 1440-1445.
Ildiko, F. K., M. Monika, A. Agota, G. Katalin, and F. Eva, 2013, Hydrogen peroxide oxidation for in situ remediation of trichloroethylene - from the laboratory to the field: Periodica Polytechnica-Chemical Engineering, v. 57, p. 41-51.
Jang, D. G., C. H. Ahn, J. S. Choi, J. H. Kim, J. K. Kim, and J. C. Joo, 2016, Enhanced removal of trichloroethylene in water using nano-ZnO/polybutadiene rubber composites: Catalysts, v. 6.
Joo, J. C., C. H. Ahn, D. G. Jang, Y. H. Yoon, J. K. Kim, L. Campos, and H. Ahn, 2013, Photocatalytic degradation of trichloroethylene in aqueous phase using nano-ZNO/Laponite composites: Journal of Hazardous Materials, v. 263, p. 569-574.
Kaown, D., S. C. Jun, R. H. Kim, S. Woosik, and K. K. Lee, 2016, Characterization of a site contaminated by chlorinated ethenes and ethanes using multi-analysis: Environmental Earth Sciences, v. 75.
Lebid, M., and M. Omari, 2016, Synthesis and electrochemical properties of LaFeO3 oxides prepared via Sol–Gel method: Arabian Journal for Science and Engineering, v.39, p.147-152
Lewis, S., A. Lynch, L. Bachas, S. Hampson, L. Ormsbee, and D. Bhattacharyya, 2009, Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems: Environmental Engineering Science, v. 26, p. 849-859.
Li, S., L. Jing, W. Fu, L. Yang, B. Xin, and H. Fu, 2007, Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation: Materials Research Bulletin, v. 42, p. 203-212.
Liang, C., Z.S. Wang, and C. J. Bruell, 2007, Influence of pH on persulfate oxidation of TCE at ambient temperatures: Chemosphere, v. 66, p. 106-113.
Linsebigler, A. L., G. Lu, and J. T. Yates, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results: Chemical Reviews, v. 95, p. 735-758.
Lovelace, K., 1997, Evaluation the technical impracticability of groundwater cleanup: 1997 International Conference on Groundwater Quality Protection, Taipei, p. 165-179.
Marezio, M., and P. D. Dernier, 1971, The bond lengths in LaFeO3: Materials Research Bulletin, v. 6, p. 23-29.
Meriaudeau, P., and J. C. Vedrine, 1976, Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O3–3 species: Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, v. 72, p. 472-480.
Miyake, Y., A. Sakoda, H. Yamanashi, H. Kaneda, and M. Suzuki, 2003, Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water: Water Research, v. 37, p. 1852-1858.
Moroizumi, T., and Y. Sasaki, 2008, Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry: Soil Science Society of America Journal, v. 72, p. 1520-1526.
Morono, Y., H. Unno, and K. Hori, 2006, Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria: Biochemical Engineering Journal, v. 31, p. 173-179.
Mulligan, C., R. Yong, and B. Gibbs, 2001, Remediation technologies for metal-contaminated soils and groundwater: an evaluation: Engineering Geology, v. 60, p. 193-207.
Ndong, L. B. B., X. Gu, S. Lu, M. P. Ibondou, Z. Qiu, Q. Sui, S. M. Mbadinga, and B. Mu, 2015, Role of reactive oxygen species in the dechlorination of trichloroethene and 1.1.1-trichloroethane in aqueous phase in UV/TiO2 systems: Chemical Engineering Science, v. 123, p. 367-375.
Niu, J., L. Yin, Y. Dai, Y. Bao, and J. C. Crittenden, 2016, Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water: Applied Catalysis A: General, v. 521, p. 90-95.
O′Carroll, D. M., and B. E. Sleep, 2007, Hot water flushing for immiscible displacement of a viscous NAPL: Journal of contaminant hydrology, v. 91, p. 247-266.
Peng, K., L. Fu, H. Yang, and J. Ouyang, 2016, Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity: Scientific reports, v. 6.
Reitsma, S., and M. Marshall, 2000, Experimental study of oxidation of pooled NAPL: Second International Conference on Remediation of Chlorinated and Racalcitrant Compounds, p. 25-32.
Rusevova, K., R. Köferstein, M. Rosell, H. H. Richnow, F.-D. Kopinke, and A. Georgi, 2014, LaFeO3 and BiFeO3 perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions: Chemical Engineering Journal, v. 239, p. 322-331.
Sharma, P. K., and P. L. McCarty, 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1, 2-dichloroethene: Applied and Environmental Microbiology, v. 62, p. 761-765.
Shen, H., T. Xue, Y. Wang, G. Cao, Y. Lu, and G. Fang, 2016, Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination: Materials Research Bulletin, v. 84, p. 15-24.
Suttinun, O., R. Müller, and E. Luepromchai, 2010, Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils: Applied and Environmental Microbiology, v. 76, p. 4684-4690.
Tang, P., Y. Tong, H. Chen, F. Cao, and G. Pan, 2013, Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst: Current Applied Physics, v. 13, p. 340-343.
The Agency for Toxic Substances and Disease Registry(ATSDR)Toxicological Profile for trichloroethylene, available at http://www.atsdr.cdc.gov/toxfaqs/tfacts19.pdf (accessed June 9, 2015)
Thirumalairajan, S., K. Girija, I. Ganesh, D. Mangalaraj, C. Viswanathan, A. Balamurugan, and N. Ponpandian, 2012, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity: Chemical Engineering Journal, v. 209, p. 420-428.
Tseng, H.H., J. G. Su, and C. Liang, 2011, Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene: Journal of Hazardous Materials, v. 192, p. 500-506.
Waduge, W. A. P., K. Soga, and J. Kawabata, 2004, Effect of NAPL entrapment conditions on air sparging remediation efficiency: Journal of Hazardous Materials, v. 110, p. 173-183.
Wang, Y., J. Zhu, L. Zhang, X. Yang, L. Lu, and X. Wang, 2006, Preparation and characterization of perovskite LaFeO3 nanocrystals: Materials Letters, v. 60, p. 1767-1770.
Wickramanayake, G. B., A. R. Gavaskar, and A. S. Chen, 2000, Remediation of chlorinated and recalcitrant compounds: Chemical oxidation and reactive barriers: Battele Press, Columbus
Yamaguchi, S., W. Hiroki, D. Sanchez-Rodriguez, J. Farjas, and H. Yahiro, 2016, Synthesis of perovskite-type oxide, LaFeO3, from coordination polymer precursor, La[Fe(CN)6]• 5H2O: Journal of the Ceramic Society of Japan, v. 124, p. 7-12.
Yamazaki, S., S. Matsunaga, and K. Hori, 2001a, Photocatalytic degradation of trichloroethylene in water using TiO2 pellets: Water Research, v. 35, p. 1022-1028.
Yang, H., G. Li, T. An, Y. Gao, and J. Fu, 2010, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs: Catalysis Today, v. 153, p. 200-207.
Zhang, Y., M. Park, H. Y. Kim, B. Ding, and S.-J. Park, 2016, In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation: Applied Surface Science, v. 384, p. 192-199.
Zogorski, J. S., J. M. Carter, T. Ivahnenko, W. W. Lapham, M. J. Moran, B. L. Rowe, P. J. Squillace, and P. L. Toccalino, 2006, Volatile organic compounds in the nation’s ground water and drinking-water supply wells: US Geological Survey Circular, v. 1292, p. 101.
土壤及地下水污染事件應變調查、查證及技術,行政院環保署土壤及地下水污染整治基金管理會,2016,https://sgw.epa.gov.tw/public/0506.aspx土壤及地下水污染整治年報,行政院環保署土壤及地下水污染整治基金管理會,2001-2015
白崢鈺,淺談奈米光觸媒於室內空氣污染物之應用,財團法人台灣產業服務基金會
向華, 施儉, 張青, 陸峰, 2011, 曝氣吹脱法去除水中三氯乙烯等有機污染物: 淨水技術, v. 30, p. 151-154.
李中光,劉新校,邱惠敏,臭氧在水處理中之應用,環保簡訊,第 27 期,2015
胡順之, 2011, 三氯乙烯污染地下水的吹脱方法研究 [D], 上海: 華東理工大學.
梁書豪、簡華逸、郭育嘉、楊宗翰、高志明,土壤及地下水整治技術發展簡介,國立中山大學環境工程研究所所碩士論文,2013
陳家洵,董天行, 三氣乙烯污染地下水之整治標準研究期末報告,國立中央大學應用地質研究所,1998
謝介士,葉瑾瑜,陳紫媖,東港生技研究中心,海中無機氮化合物最新去除法-光電化學法,水試所電子報第49期,2010 |