博碩士論文 103326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.222.78.65
姓名 姚彥丞(Yen-Chen Yao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
(Evaluation of energy conversion efficiency and speciation characteristics of pyrolytic oil in catalytic pyrolysis of plastic wastes)
相關論文
★ 大學生對綠建材認知與態度之研究★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究
★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究
★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究
★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究應用流體化床催化裂解反應系統,探討不同種類之塑膠廢棄物,在控制熱裂解反應溫度560~580℃及添加5~15%之礦物型催化劑(沸石)條件下,共同熱裂解轉換能源之效率與裂解油物種特性之變化。研究探討之塑膠廢棄物種類,主要包括聚乳酸生質塑膠(Polylactic Acid, PLA)、聚對苯二甲酸乙二酯(Polyethylene terephthalate, PET)及聚苯乙烯(Polystyrene, PS),試驗規劃之摻混比例介於0%~30%。此外,不同塑膠廢棄物共同熱裂解之協同效應與反應動力特性,亦是本研究探討的重點。研究結果顯示,試驗之PLA反應活化能最高,約為258 kJ/mole,而PS之反應活化能最低,約為170 kJ/mole。且當共同裂解反應時,試驗之反應活化能,隨PET或PS之摻混比例增加,而有明顯降低之趨勢。亦即試驗之塑膠廢棄物在共同熱裂解反應過程,具有協同反應之效果。根據熱裂解產油率之分析結果顯示,PLA的產油率約為14.5%,隨PET或PS摻混比例增加而有增加之現象,其中尤以30%之PET添加比例最為明顯,其共同熱裂解之產油率增加至21%。若進一步考量熱解油中輕質油(light fraction)及重質油(heavy fraction)之比例特性,則明顯可知PLA與30%之PET或PS共同熱裂解,其輕質油產率分別由5.85%增加至10.95%及8.4%。添加催化劑之分析結果顯示,當添加5%~10%催化劑試驗,熱解油產率約從21%增加至22.63%,且其重質油之產率有降低之趨勢。根據裂解油之物化特性分析結果顯示,裂解油O/C比隨PET或PS摻混比例之增加而降低,約從1.0降低至0.5,此有助於減緩裂解油老化現象發生的潛勢。根據共同熱裂解產生之熱解油官能基分析結果顯示,輕質油之含氧官能基物質,逐漸轉變為支鏈或環狀官能基物質。此外,裂解油之含氮與含硫量,亦隨著共同裂解或催化裂解之反應,而有降低的趨勢,亦即後續熱解油之燃料應用時,將可有效降低污染物之排放潛勢。
摘要(英) This research aims to evaluate the energy conversion efficiency and speciation characteristics of pyrolytic oil in catalytic pyrolysis of plastic wastes by using fluidized bed reactor with controlled at pyrolysis temperature 560~580℃ and 5~15% mineral catalyst (zeolite) addition. The plastic wastes used in this research were including Polylactic Acid, (PLA), Polyethyleneterephthalate (PET), and Polystyrene (PS), respectively. Blending ratio of PET or PS was controlled at 0%~30%. Synergistic effect and kinetics characteristics in co-pyrolysis of plastic wastes were also discussed. The analysis results of activation energy of tested plastic wastes indicated that PLA got the higher activation energy (258 kJ/mole) than that of PS (170 kJ/mole). Meanwhile, activation energy of mixed plastic wastes was decreased with an increase in PET and/or PS addition. It implied that the synergistic effect was occurred at different PET or PS blending and could promote PLA cracking into small molecular. According to the results of pyrolytic oil yield from PLA, the pyroltic oil production was approximately 14.5% and oil yield was increased to 21% as PET blending ratio was increasing to 30%. Based on the yield results of light and heavy fraction of pyrolytic oil produced from mixed plastic wastes, in the case of PET or PS blending, yield of light oil fraction was increased from 5.85% to 10.95% and 8.4%, respectively. On the other hand, tested catalyst could slightly increase pyrolytic oil yield from 21% to 22.62% with catalyst addition ratio increasing from 5% to 10%. However, heavy fraction of pyrolytic oil was significantly decreased with an increase in catalyst addition. Based on the results of characteristics of pyrolytic oil, the O/C ratio of pyrolytic oil was decreased from 1.0 to 0.5 with an increased in PET or PS addition. It implied that pyrolytic oil produced from blended PET or PS could prevent the aging of pyrolytic oil during its storage or transportation. According to the analysis results of functional group in pyrolytic oil, light fraction of pyrolytic oil containing oxygenated functional group will convert to that of oil containing branched and/or aromatic functional group. The nitrogen and sulfur contents of pyrolytic oil were also decreased with PET or PS blending and tested catalyst addition. It could reduce significantly the air pollutants emission when it applied to alternative fuel application.
關鍵字(中) ★ 生質塑膠
★ 塑膠廢棄物
★ 熱裂解
★ 催化裂解
關鍵字(英) ★ Biodegradable plastic
★ Plastic waste
★ Pyrolysis
★ Catalytic pyrolysis
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xii
第一章 前言 1
第二章 文獻回顧 5
2-1 塑膠處理現況 5
2-2 熱裂解 8
2-2-1 熱裂解產物 11
2-2-2 熱裂解產物影響因素 13
2-3 裂解油特性與改質方法 31
2-3-1 裂解油特性分析 31
2-3-2 提昇裂解油穩定性之物理方法 36
2-3-3 提昇裂解油穩定性之化學方法 38
2-3-4 裂解油之老化評估 41
第三章 研究材料與方法 45
3-1 研究材料 46
3-1-1 原料之基本特性分析 46
3-1-2 催化劑之基本特性分析 46
3-2 試驗方法 46
3-2-1 原料之動力學分析 46
3-2-2 試驗設備 48
3-2-3 操作條件 49
3-2-4 試驗步驟 50
3-3 分析項目與方法 51
3-3-1 塑膠原料 51
3-3-2 催化劑 54
3-3-3 熱裂解產物 55
第四章 結果與討論 59
4-1 試驗材料之基本特性分析 59
4-1-1 塑膠原料之基本特性分析結果 59
4-1-2 催化劑之基本特性分析結果 60
4-1-3 熱重損失之分析結果 61
4-2 熱裂解產物之分析結果 68
4-2-1 熱裂解試驗之重覆分析結果 68
4-2-2 熱裂解產物之質量平衡 70
4-2-3 PET與PS摻混比例對熱裂解產物量之影響 78
4-2-4 添加催化劑對裂解產物產量之影響 83
4-3 熱裂解產物之特性分析 85
4-3-1 裂解油元素分析結果 85
4-3-2 裂解油官能基鑑定分析結果 92
4-3-3 氣體組成分析結果 103
4-3-4 催化劑對產物特性之影響 111
4-4 裂解產物之能源分析結果 126
4-4-1 添加PET/PS對裂解產物高位發熱量之影響 126
4-4-2 添加催化劑對裂解產物高位發熱量之影響 131
4-5 產能效率評估 132
4-5-1 碳分佈 132
4-5-2 能源密度 138
第五章 結論與建議 147
5-1 結論 147
5-1-1 不同塑膠與摻混比例對受熱行為與活化能之影響結果 147
5-1-2 不同塑膠與摻混比例對裂解產物之影響結果 147
5-1-3 添加催化劑對裂解產物之影響結果 148
5-1-4 摻混不同塑膠與添加催化劑對油品特性分析之影響結果 149
5-2 建議 149
參考文獻 151
附錄 163

附錄一、摻混不同塑膠及添加催化劑對產物量之影響 164
附錄一、摻混不同塑膠及添加催化劑對產物量之影響(續) 165
附錄二、PLA之氣體體積變化 166
附錄三、PS之氣體體積變化 166
附錄四、PLA90%+PET10%之氣體體積變化 167
附錄五、PLA80%+PET20%之氣體體積變化 167
附錄六、PLA70%+PET30%之氣體體積變化 168
附錄七、PLA90%+PS10%之氣體體積變化 168
附錄八、PLA80%+PS20%之氣體體積變化 169
附錄九、PLA70%+PS30%之氣體體積變化 169
附錄十、PLA70%+PET25%+PS5%之氣體體積變化 170
附錄十一、PLA70%+PET20%+PS10%之氣體體積變化 170
附錄十二、PLA70%+PET15%+PS15%之氣體體積變化 171
附錄十三、PLA70%+PET30%+5% catalyst之氣體體積變化 171
附錄十四、PLA70%+PET30%+10% catalyst之氣體體積變化 172
附錄十五、PLA70%+PET30%+15% catalyst之氣體體積變化 172
附錄十六、校正前氣體重量彙整表 173
附錄十六、校正前氣體重量彙整表(續) 174
附錄十七、校正因子與校正後氣體重量彙整表 175
附錄十七、校正因子與校正後氣體重量彙整表(續) 176
參考文獻


Abbas-Abadi, M. S., Haghighi, M. N., Yeganeh, H., & McDonald, A. G., 2014. Evaluation of pyrolysis process parameters on polypropylene degradation products. Journal of Analytical and Applied Pyrolysis,109, 272-277.
Abnisa, F., Arami-Niya, A., Daud, W. W., Sahu, J. N., & Noor, I. M. 2013 . Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 76, 1073-1082.
Abnisa, F., & Daud, W. M. A. W., 2014. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management,87, 71-85.
Adrados, A., De Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., & Torres, A., 2012. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management,32(5), 826-832.
Aguado, J., Serrano, D. P., San Miguel, G., Castro, M. C., & Madrid, S., 2007. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. Journal of Analytical and Applied Pyrolysis, 79(1), 415-423.
Ahmad, I., Khan, M. I., Khan, H., Ishaq, M., Tariq, R., Gul, K., & Ahmad, W., 2015. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. International Journal of Green Energy, 12(7), 663-671.
Al-Salem, S. M., Lettieri, P., & Baeyens, J., 2009. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste management, 29(10), 2625-2643.
Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. 2013. Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and bioenergy, 59, 316-324.
Brebu, M., Ucar, S., Vasile, C., & Yanik, J., 2010. Co-pyrolysis of pine cone with synthetic polymers. Fuel, 89(8), 1911-1918.
Bridgwater, A. V., 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy,38, 68-94.
Cai, J., Wang, Y., Zhou, L., & Huang, Q. 2008. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Processing Technology, 89(1), 21-27.
Caputo, A. C., Palumbo, M., Pelagagge, P. M., & Scacchia, F., 2005. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy, 28(1), 35-51.
Cappai, G., Cara, S., Muntoni, A., & Piredda, M. 2012. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration. Journal of hazardous materials, 207, 159-164.
Çepelioğullar, Ö., & Pütün, A. E., 2014. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis,110, 363-374.
Chen, D., Zhou, J., Zhang, Q., & Zhu, X., 2014. Evaluation methods and research progresses in bio-oil storage stability. Renewable and Sustainable Energy Reviews,40, 69-79.
Chen, G., Liu, C., Ma, W., Zhang, X., Li, Y., Yan, B., & Zhou, W., 2014. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource technology,166, 500-507.
Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., & Baglioni, P., 2003. Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1: emulsion production.Biomass and bioenergy, 25(1), 85-99.
Chien, Y. C., Liang, C., & Yang, S. H. 2011. Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric environment, 45(1), 123-127.
Chiu, S. J., & Cheng, W. H. 2000. Promotional effect of copper (II) chloride on the thermal degradation of poly (ethylene terephthalate). Journal of Analytical and Applied Pyrolysis, 56(2), 131-143.
Chiu, S. J., & Wu, Y. S. 2009. A comparative study on thermal and catalytic degradation of polybutylene terephthalate. Journal of Analytical and Applied Pyrolysis, 86(1), 22-27.
Cornelissen, T., Yperman, J., Reggers, G., Schreurs, S., & Carleer, R., 2008. Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value. Fuel,87(7), 1031-1041.
Czégény, Z., Jakab, E., Bozi, J., & Blazsó, M., 2015. Pyrolysis of wood–PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC. Journal of Analytical and Applied Pyrolysis, 113, 123-132.
De Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., Torres, A., & Chomón, M. J., 2009. Pyrolysis of the rejects of a waste packaging separation and classification plant. Journal of Analytical and Applied Pyrolysis,85(1), 384-391.
Diebold, J. P., & Czernik, S., 1997. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels, 11(5), 1081-1091.
Dimitrov, N., Krehula, L. K., Siročić, A. P., & Hrnjak-Murgić, Z., 2013. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer degradation and stability, 98(5), 972-979.
Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., & Bilbao, J., 2009. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 85(1), 345-351.
Hassen-Trabelsi, A. B., Kraiem, T., Naoui, S., & Belayouni, H., 2014. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste management, 34(1), 210-218.
Hilten, R. N., & Das, K. C., 2010. Comparison of three accelerated aging procedures to assess bio-oil stability. Fuel, 89(10), 2741-2749.
Huang, W. C., Huang, M. S., Huang, C. F., Chen, C. C., & Ou, K. L. 2010. Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel, 89(9), 2305-2316.
Imam, T., & Capareda, S., 2012. Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis, 93, 170-177.
Islam, M. R., Parveen, M., & Haniu, H., 2010. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresource Technology, 101(11), 4162-4168.
Jiang, X., & Ellis, N., 2010. Upgrading bio-oil through emulsification with biodiesel: thermal stability. Energy & Fuels, 24(4), 2699-2706.
Ji-Lu, Z. 2007. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis, 80(1), 30-35.
Jung, S. H., Cho, M. H., Kang, B. S., & Kim, J. S., 2010. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277-284.
Ki, O. L., Kurniawan, A., Lin, C. X., Ju, Y. H., & Ismadji, S., 2013. Bio-oil from cassava peel: a potential renewable energy source. Bioresource technology, 145, 157-161.
Kumagai, S., Hasegawa, I., Grause, G., Kameda, T., & Yoshioka, T., 2015. Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2. Journal of Analytical and Applied Pyrolysis, 113, 584-590.
Kung, C. C., Kong, F., & Choi, Y., 2015. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecological Indicators, 51, 139-145.
Lee, K. H. 2012. Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. Journal of Analytical and Applied Pyrolysis, 94, 209-214.
Li, H., Jiang, X., Cui, H., Wang, F., Zhang, X., Yang, L., & Wang, C., 2015. Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. Journal of Analytical and Applied Pyrolysis,115, 37-42.
Lin, H. T., Huang, M. S., Luo, J. W., Lin, L. H., Lee, C. M., & Ou, K. L. 2010. Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology, 91(11), 1355-1363.
Lin, Y. H., Yang, M. H., Wei, T. T., Hsu, C. T., Wu, K. J., & Lee, S. L. 2010. Acid-catalyzed conversion of chlorinated plastic waste into valuable hydrocarbons over post-use commercial FCC catalysts. Journal of Analytical and Applied Pyrolysis, 87(1), 154-162.
Lin, Y. H., & Yang, M. H. 2008. Tertiary recycling of polyethylene waste by fluidised-bed reactions in the presence of various cracking catalysts. Journal of Analytical and Applied Pyrolysis, 83(1), 101-109.
Lin, Y. H., & Yen, H. Y., 2005. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons. Polymer Degradation and Stability, 89(1), 101-108.
Liu, W. W., Hu, C. W., Yang, Y., Tong, D. M., Zhu, L. F., Zhang, R. N., & Zhao, B. H., 2013. Study on the effect of metal types in (Me)-Al-MCM-41 on the mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE. Applied Catalysis B: Environmental, 129, 202-213.
López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., & Aranzabal, A., 2011. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Applied Catalysis B: Environmental,104(3), 211-219.
López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A., 2011. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal,173(1), 62-71.
Lopez-Urionabarrenechea, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A., 2012. Catalytic stepwise pyrolysis of packaging plastic waste. Journal of Analytical and Applied Pyrolysis,96, 54-62.
Lu, Q., Yang, X. L., & Zhu, X. F., 2008. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. Journal of Analytical and Applied Pyrolysis, 82(2), 191-198.
Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., ... & García, T., 2014. Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Processing Technology,119, 263-271.
Meier, D., van de Beld, B., Bridgwater, A. V., Elliott, D. C., Oasmaa, A., & Preto, F., 2013. State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 20, 619-641.
Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I., 2009. Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7), 1032-1040.
Muhammad, C., Onwudili, J. A., & Williams, P. T., 2015. Catalytic pyrolysis of waste plastic from electrical and electronic equipment. Journal of Analytical and Applied Pyrolysis, 113, 332-339.
Nokkosmäki, M. I., Kuoppala, E. T., Leppämäki, E. A., & Krause, A. O. I., 2000. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. Journal of Analytical and Applied Pyrolysis, 55(1), 119-131.
Oasmaa, A., & Kuoppala, E., 2003. Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy & Fuels, 17(4), 1075-1084.
Oasmaa, A., Kuoppala, E., Selin, J. F., Gust, S., & Solantausta, Y., 2004. Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition. Energy & Fuels, 18(5), 1578-1583.
Oasmaa, A., & Meier, D., 2005. Norms and standards for fast pyrolysis liquids: 1. Round robin test. Journal of Analytical and Applied Pyrolysis, 73(2), 323-334.
Ojha, D. K., & Vinu, R., 2015. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. Journal of Analytical and Applied Pyrolysis, 113, 349-359.
Önal, E., Uzun, B. B., & Pütün, A. E., 2014. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Conversion and Management, 78, 704-710.
Onwudili, J. A., Insura, N., & Williams, P. T., 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303.
Plastics Europe, website: http://www.plasticseurope.org/home.aspx, 2017。
Scott, D. S., Paterson, L., Piskorz, J., & Radlein, D., 2001. Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. Journal of Analytical and Applied Pyrolysis, 57(2), 169-176.
Shadangi, K. P., & Mohanty, K., 2015. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel, 153, 492-498.
Shah, J., & Jan, M. R., 2015. Effect of polyethylene terephthalate on the catalytic pyrolysis of polystyrene: Investigation of the liquid products. Journal of the Taiwan Institute of Chemical Engineers, 51, 96-102.
Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W., & Aroua, M. K., 2016. A review on pyrolysis of plastic wastes. Energy Conversion and Management,115, 308-326.
Sushil, S., & Batra, V. S., 2008. Catalytic applications of red mud, an aluminium industry waste: A review.Applied Catalysis B: Environmental,81(1), 64-77.
Uçar, S., & Karagöz, S., 2014. Co-pyrolysis of pine nut shells with scrap tires.Fuel, 137, 85-93.
Undri, A., Rosi, L., Frediani, M., & Frediani, P., 2014. Upgraded fuel from microwave assisted pyrolysis of waste tire. Fuel, 115, 600-608.
Uzun, B. B., & Kanmaz, G., 2014. Catalytic pyrolysis of waste furniture sawdust for bio-oil production. Waste Management & Research, 32(7), 646-652.
Varuvel, E. G., Mrad, N., Tazerout, M., & Aloui, F., 2012. Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine. Applied Energy, 100, 249-257.
Whyte, H. E., Loubar, K., Awad, S., & Tazerout, M. 2015. Pyrolytic oil production by catalytic pyrolysis of refuse-derived fuels: Investigation of low cost catalysts. Fuel Processing Technology, 140, 32-38.
Wiggers, V. R., Meier, H. F., Wisniewski, A., Barros, A. C., & Maciel, M. W., 2009. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study. Bioresource technology, 100(24), 6570-6577.
Williams, P. T., & Williams, E. A., 1999. Interaction of plastics in mixed-plastics pyrolysis. Energy & Fuels, 13(1), 188-196.
Williams, P. T., 2013. Pyrolysis of waste tyres: a review. Waste management, 33(8), 1714-1728.
Wisniewski, A., Wiggers, V. R., Simionatto, E. L., Meier, H. F., Barros, A. A. C., & Madureira, L. A. S., 2010. Biofuels from waste fish oil pyrolysis: chemical composition. Fuel, 89(3), 563-568.
Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M., 2015. Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180.
Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., & Ruan, R., 2014. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource technology, 172, 162-168.
Xiong, W. M., Zhu, M. Z., Deng, L., Fu, Y., & Guo, Q. X., 2009. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy & Fuels, 23(4), 2278-2283.
Xu, X., Zhang, C., Liu, Y., Zhai, Y., & Zhang, R., 2013. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels. Chemosphere, 93(4), 652-660.
Xue, G., Kwapinska, M., Horvat, A., Li, Z., Dooley, S., Kwapinski, W., & Leahy, J. J. 2014. Gasification of Miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energy & Fuels, 28(2), 1121-1131.
Yang, Z., Kumar, A., & Huhnke, R. L., 2015,,. Review of recent developments to improve storage and transportation stability of bio-oil. Renewable and Sustainable Energy Reviews, 50, 859-870.
Zhang, H., Xiao, R., Nie, J., Jin, B., Shao, S., & Xiao, G. (2015). Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresource technology, 192, 68-74.
Zhou, L., Luo, T., & Huang, Q. 2009. Co-pyrolysis characteristics and kinetics of coal and plastic blends. Energy Conversion and Management, 50(3), 705-710.

王鯤生,邱英嘉,林文清,微晶纖維素活性碳之熱裂解條件與重金屬吸附特性,第十九屆廢棄物處理技術研討會,高雄,2007。
江康鈺,林柏峰,呂承翰,簡光勵,都市下水污泥催化裂解衍生之生質油特性評估研究,第二十四屆廢棄物處理技術研討會,中壢,2012。
江康鈺,簡聖珉,呂承翰,姚彥丞,應用催化裂解技術轉換下水污泥為生質油之可行性研究,第二十七屆廢棄物處理技術研討會,中壢,2015。
吳照雄,王鞽融,陳思潔,何明錫,曾子殷,第二十一屆廢棄物處理技術研討會,雲林,2009。
吳照雄,張嘉珮,黃慧文,陳亭穎,黃菀榆,黃婉婷,廢處控面板熱裂解回收油品之可行性研究,第二十二屆廢棄物處理技術研討會,屏東,2010。
吳照雄,王仁鴻,黃天寶,何鎧任,王奕翔,生物分解性塑膠共裂解對產率影響之研究,第二十八屆廢棄物處理技術研討會,台南,2016。
林錕松,陳健龍,張朝順,李坤禹,林正杰,廢冰箱泡棉之觸媒裂解資源化技術研發,第十九屆廢棄物處理技術研討會,高雄,2007。
官文惠,添加微波吸收劑對微波誘發裂解玉米葉之氣相產物影響及添加劑回收再利用之可行性評估,第二十一屆廢棄物處理技術研討會,雲林,2009。
官文惠,范淑雅,運用微波裂解技術轉換農業廢棄物產物之研究,第二十七屆廢棄物處理技術研討會,中壢,2015。
崔砢,江東諺,何承准,利用堆肥製備熱裂解碳吸附有機污染物之研究,第二十一屆廢棄物處理技術研討會,雲林,2009。
張吉正,官文惠,添加二氧化鎳對微波誘發裂解生質廢棄物蔗渣產物之影響,第二十二屆廢棄物處理技術研討會,屏東,2010。
黃于峯,駱尚廉,闕蓓德,官文惠,石峻豪,微波裂解稻稈之反應特性分析,第二十五屆廢棄物處理技術研討會,高雄,2013。
黃于峯,駱尚廉,闕蓓德,官文惠,木質纖維生質物之微波裂解,第二十八屆廢棄物處理技術研討會,台南,2016。
曾立軒,謝主信,江鴻龍,石化污泥熱解特性及衍生吸附劑應用之研究,第二十二屆廢棄物處理技術研討會,屏東,2010。
曾俊諺,林國雄,江鴻龍,生物污泥微波熱裂解特性研究,第二十七屆廢棄物處理技術研討會,中壢,2015。
董炳燕,江康鈺,呂承翰,周綵蓉,姚彥丞,油污泥催化裂解產製熱解油之特性評估研究,第二十七屆廢棄物處理技術研討會,中壢,2015。
戴華山,許祉祥,賀偉雄,王永泰,廢棄生質塑膠(PLA)容器之熱裂解動力學性質研究,第二十四屆廢棄物處理技術研討會,中壢,2012。
戴華山,蔡俊傑,陳俊宇,蔡芮欖,稻稈、蔗渣及其混合物之熱裂解動力學性質研究,第二十五屆廢棄物處理技術研討會,高雄,2013。
周明憲,2005。都市下水污泥熱裂解行為之研究,國立中央大學碩士論文。
陳俊宇,2016。稻稈與PET、PLA廢棄物共同熱裂解之可行性及動力學研究,國立高雄第一科技大學博士論文。
行政院環保署,網址: http://statis91.epa.gov.tw/epa/stmain.jsp?sys=100,2017年。
指導教授 江康鈺 審核日期 2017-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明