博碩士論文 103326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:127 、訪客IP:3.15.34.122
姓名 廖怡婷(Yi-Ting Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 結合土壤/孔隙水縮模培養、總體基因體與即時聚合酶鏈鎖反應探究水田根圈系統內主要汞甲基化菌群組成
(Using root soil & pore water microcosm incubations coupled with metagenomic and qPCR techniques to probe primary Hg-methylating guilds in the paddy rhizosphere)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近期文獻雖顯示攝食稻米是人類除了魚類食品外暴露於甲基汞的另一重要途徑,但目前對於水田生態系統內操控甲基汞(在根圈土壤)的生成、攝取與最終累積(於米粒)的生物地球化學機制所知仍極為有限。為深入了解此一課題,實驗室於2014年開始在台中火力發電廠周圍的水稻田進行採樣調查,並從根圈土壤的縮模培養試驗觀察到硫酸鹽還原菌極可能是現地主要的汞甲基化菌群;然而,此部分的試驗由於並非直接使用孔隙水,而是採用適合絕大多數厭氧菌生長的合成培養液進行實驗,加上微生物族群的細部結構並未分析,因此所得的結果尚未能實際且完整的窺得水田此敏感生態系統內部汞循環轉化的全貌。有鑑於此,本研究此次即利用現地所採的根圈土壤與其孔隙水重複前期的縮模培養,在針對可能的厭氧菌群依其獨特的生理條件添加各自生長所需的促進或抑制物質,於厭氧狀態下同時進行汞甲基化與去甲基化試驗,並藉由qPCR相對定量及metagenomics次世代定序技術,分析主要操控甲基汞生成的厭氧微生物族群。所得的結果顯示不同培養條件下的甲基汞去除率相差無幾,代表孔隙水中甲基汞的累積程度主要還是取決於甲基汞的生成潛勢,且由化學分析與汞甲基化基因的量化也可再次確認主導汞甲基化作用的菌群的確以硫酸鹽還原菌為主。qPCR的結果也表明Delta-proteobacteria為主要的汞甲基化菌群;Metagenomics的分析結果指出Geobacter為普遍存在且物種豐富度最高的汞甲基化菌屬。綜合上述結果,可得知本研究所選定的水田場址主要的汞甲基化菌群為Deltaproteobacteria中的硫酸鹽還原菌與鐵還原菌。此結果或許可作為往後水稻系統中汞污染相關預防、管理與整治工作相關策略的擬定基礎。
摘要(英) Recent studies have shown that in addition to intake of piscivorous fish, rice consumption is another critical route of human expose to methylmercury (MeHg), the most toxic form of mercury (Hg) in the environment. Nonetheless, there is still a paucity of data on the biogeochemical mechanisms that control the formation (in the rhizosphere), uptake (by root), and eventual accumulation of MeHg (in rice grain) in the paddy ecosystem. To gain an in-depth understanding of this undesirable environmental process, in 2014 we began our investigation and initiated fieldwork at rice paddies that were proximal to the coal-fired power station in Taichung. Preliminary results of microcosm incubations (of root soil samples) suggested that sulfate-reducing bacteria (SRB) might be the primary Hg methylators at our study sites. However, because the incubation tests were conducted with synthetic media instead of pore water, there was a potential fraud in our methodology that might have resulted in a bias in our observations. Further, a detail look at the microbial community structure has not yet carried out. In light of this, here we aimed at rectifying our former protocols of microcosm incubations to confirm the role of SRB as the principal Hg methylating guild. More importantly, this study incorporated certain advanced molecular biology techniques including real-time polymerase chain reactions (qPCR), metagenomics, as well as the next-generation sequencing (NGS) into this inquiry, hoping to obtain a complementary interpretation of methylation results at the cellular level. Results from root soil/pore water incubations assayed with Hg methylation & demethylation confirmed that SRB indeed were the major Hg-methylating guild in the rhizosphere of our study sites. Relative quantification of the hgcA level by qPCR also indicated that Deltaproteobacteria was the principal Hg-methylators at the class level, consistent with the aforementioned role of SRB. In addition, our data suggested that iron-reducers and methylotrophic- and hydrogentrophic-methanogens, while not prominent, might as well play a certain role in MeHg production in paddies. However, metagenomic analysis of 16S rRNA genes showed that Geobacter was the most abundant genus in all samples, suggesting that there are a significant amount of unknown Hg-methylating microbes inhabiting in paddies that await to be identified. On the basis of all these results, time-course experiments focusing on RT-PCR and RT-qPCR of mRNA transcribed from the hgcAB gene cluster are warranted for the future study to pinpoint Hg-methylators at the species level. Ultimately, information gain from this type of investigations may entail us to devise more efficient and sounder remediation strategies to deal with Hg contamination issues in farmland.
關鍵字(中) ★ 水稻田
★ 甲基汞
★ 即時聚合酶鏈鎖反應
★ 總體基因體
★ 硫酸鹽還原菌
關鍵字(英) ★ rice paddies
★ methylmercury
★ qPCR
★ metagenomics
★ sulfate-reducing bacteria
論文目次 摘要 I
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 環境中汞的來源和型態 5
2.2 汞的毒性及危害性 6
2.3 濕地為汞甲基化的熱點場址 7
2.4 甲基汞於水稻田的生成與累積 8
2.5 環境因子與汞的化學組成對微生物行甲基化的影響 10
2.6 水稻田中參與汞甲基化的微生物 11
2.7 分子生物偵測 14
2.7.1 即時定量聚合酶連鎖反應(Quantitative Real-Time PCR, qPCR) 14
2.7.2 Metagenomics 16
第三章 研究方法與設備 19
3.1 研究流程與架構 19
3.2 實驗材料與儀器 21
3.2.1 實驗藥品與試劑 21
3.2.1 儀器與設備 23
3.3 研究場址介紹 25
3.4 現地採樣實驗規劃與樣品前處理 26
3.5 縮模試驗 28
3.6 分生試驗 32
3.6.1 DNA萃取 32
3.6.2 Metagenomics 32
3.6.3 qPCR 33
3.7 化學分析 36
3.7.1 甲基汞分析 36
3.7.2 生物可利用鐵分析 36
3.7.3 孔隙水硫酸鹽分析 38
第四章 結果與討論 39
4.1 環境樣本地化參數分析 39
4.2 縮模培養之甲基化試驗結果 42
4.3 縮模培養之去甲基化試驗結果 46
4.4 分生試驗結果探討 49
4.4.1 Real-time PCR結果討論 49
4.4.2 Metagenomics結果討論 59
4.5 分生實驗與縮模實驗之探討 70
4.6 環境意義 71
第五章 結論與建議 73
5.1 結論 73
參考文獻 75
參考文獻

1. Barringer, J. L., and C. L. MacLeod (2001) ”Relation of mercury to other chemical constituents in ground water in the Kirkwood-Cohansey aquifer system New Jersey Coastal Plain, and mechanisms for mobilization of mercury from sediments to ground water.” US Department of the Interior, US Geological Survey.
2. Bae, H.S., Dierberg, F.E.and A.Ogram (2014) ”Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. ” Applied and Environmental Microbiology 80:6517–6526.
3. Barringer, J. L., and Z. Szabo (2006) ”Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain.” Water, Air, and Soil Pollution 175:193-221
4. Benoit, J., C. Gilmour, A. Heyes, R. Mason, and C. Miller (2003) ”Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems.” ACS symposium series: 262-297.
5. Benoit, J. M., C. C. Gilmour, and R. P. Mason (2001) ”The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of desulfobulbus propionicus(1pr3). ” Environmental Science & Technology 35: 127-132.
6. Benoit, J. M., C. C. Gilmour, R. P. Mason, and A. Heyes (1999a) ”Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters” Environmental Science & Technology 33: 951-957,
7. Benoit, J. M., R. P. Mason, and C. C. Gilmour (1999b) ”Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria” Environmental Toxicology and Chemistry 18: 2138-2141
8. Branfireun, B. A., N. T. Roulet, C. A. Kelly, and J. W. M. Rudd (1999). ”In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments” Global Biogeochemical Cycles 13: 743-750,
9. Carpi, A. (1997). ”Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere.” Water, Air, and SoilPollution 98: 241-254.

10. Christensen, G. A., A. M. Wymore, A. J. King, M. Podar, R. A. Hurt, Jr., E. U. Santillan, A. Soren, C. C. Brandt, S. D. Brown, A. V. Palumbo, J. D. Wall, C. C. Gilmour and D. A. Elias (2016). ”Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment.” Applied and Environmental Microbiology 82: 6068-6078.
11. Compeau, G. C. and R. Bartha (1985). ”Sulfate-Reducing Bacteria: Principal Methylators of Mercury in Anoxic Estuarine Sediment.” Applied and Environmental Microbiology: 498-502.
12. Domagalski, J. L., C. N. Alpers, D. G. Slotton, T. H. Suchanek and S. M. Ayers (2004). ”Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California.” Science of The Total Environment 327: 215-237.
13. Evers, D. C., R. T. Graham, C. R. Perkins, R. Michener and T. Divoll (2009). ”Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern.” Endangered Species Research 7: 249-256.
14. Feng, X., P. Li, G. Qiu, S. Wang, G. Li, L. Shang, B. Meng, H. Jiang, W. Bai, Z. Li and X. Fu (2008). ”Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China.” Environmental Science & Technology 42: 326-332.
15. Fitzgerald, W.F. and C.H. Lamborg (2005) ”Geochemistry of mercury in the environment.” In Environmental Geochemistry; Lollar, B.S., Ed.; Elsevier; Oxford:107-148.
16. Fleming, E. J., E. E. Mack, P. G. Green and D. C. Nelson (2006). ”Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium.” Applied and Environmental Microbiology 72: 457-464.
17. Gilmour, C. C., D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, and J. D. Wall (2011) ”Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation.” Applied and Environmental Microbiology 77: 3938-3951
18. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey and D. A. Elias (2013). ”mercury methylation by novel microorganisms from new environments.” Environmental Science & Technology 47: 11810-11820.
19. Hamelin, S., M. Amyot, T. Barkay, Y. Wang and D. Planas (2011). ”Methanogens: principal methylators of mercury in lake periphyton.” Environmental Science & Technology 45: 7693-7700.
20. Han, F. X., Y. Su, D. L. Monts, C. A. Waggoner and M. J. Plodinec (2006). ”Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA.” Science of the Total Environment 368: 753-768.
21. Hong, C., X. Yu, J. Liu, Y. Cheng and S. E. Rothenberg (2016). ”Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China.” Environmental Research 150: 519-527.
22. Horvat, M., N. Nolde, V. Fajon, V. Jereb, M. Logar, S. Lojen, R. Jacimovic, I. Falnoga, Q. Liya, J. Faganeli and D. Drobne (2003). ”Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.” Science of The Total Environment 304: 231-256.
23. Ju, F. and T. Zhang (2015). ”Experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology.” Environmental Science & Technology 49: 12628-12640.
24. Keeler, G.J., Landis, M.S., Norris, G.A., Christianson, E.M., and J.R. Dvonch (2006). ”Sources of mercury wet deposition in eastern Ohio, USA.” Environmental Science & Technology 40: 5874-5881.
25. Kerdchoechuen, O.(2005). ”Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield.” Agriculture, Ecosystems & Environment 108:155-163.
26. Kudo, A., Y. Fujikawa, S. Miyahara, J. Zheng, H. Takigami, M. Sugahara and T. Muramatsu (1998). ”Lessons from Minamata mercury pollution, Japan — After a continuous 22 years of observation.” Water Science and Technology 38: 187-193.
27. Lin, C.-J. and S. O. Pehkonen (1999). ”The chemistry of atmospheric mercury: a review.” Atmospheric Environment 33: 2067-2079.
28. Lin, C.-C., N. Yee and T. Barkay (2012). ” Microbial transformations in the mercury cycle” 155.
29. Liu, Y.-R., R.-Q. Yu, Y.-M. Zheng and J.-Z. He (2014). ”Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in Paddy soils along an Hg gradient.” Applied and Environmental Microbiology 80: 2874-2879.
30. Liu, Y. and W. B. Whitman (2008). ”Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.” Annals of the New York Academy of Sciences 1125: 171-189.
31. Lovley, D. R., and E. J. Phillips (1987). ”Rapid assay for microbially reducible ferric iron in aquatic sediments.”Applied and Environmental Microbiology 53: 1536-1540
32. Marvin-DiPasquale, M., Windham-Myers, L., Agee, J.L., Kakouros, E., Kieu, L.H., Fleck, J.A., Alpers, C.N. and C.A. Stricker (2014). ”Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA.” Science of the Total Environment 484: 288-299.
33. Meng, B., X. Feng, G. Qiu, Y. Cai, D. Wang, P. Li, L. Shang and J. Sommar (2010). ”Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways.” Journal of Agricultural and Food Chemistry 58(8): 4951-4958.
34. Meng, B., X. Feng, G. Qiu, P. Liang, P. Li, C. Chen and L. Shang (2011). ”The process of methylmercury accumulation in rice (Oryza sativa L.).” Environmental Science & Technology 45(7): 2711-2717.
35. Meng, B., Feng, X., Qiu, G., Wang, D., Liang, P., Li, P., and L. Shang (2012). ”Inorganic mercury accumulation in rice (Oryza sativa L.).” Environmental Toxicology and Chemistry 31: 2093-2098.
36. Meng, B., X. Feng, G. Qiu, C. W. Anderson, J. Wang and L. Zhao (2014). ”Localization and speciation of mercury in brown rice with implications for pan-Asian public health.” Environmental Science & Technology 48(14): 7974-7981.
37. Monis, P. T., S. Giglio and C. P. Saint (2005). ”Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis.” Analytical Biochemistry 340(1): 24-34.
38. Orem, W., C. Gilmour, D. Axelrad, D. Krabbenhoft, D. Scheidt, P. Kalla, P. McCormick, M. Gabriel and G. Aiken (2011). ”Sulfur in the South Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration.” Critical Reviews in Environmental Science and Technology 41(sup1): 249-288.
39. Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr., S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias and L. Liang (2013). ”The genetic basis for bacterial mercury methylation.” Science 339(6125): 1332-1335.
40. Peng, X., F. Liu, W.-X. Wang and Z. Ye (2012). ”Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars.” Environmental Pollution 162: 202-208.
41. Pernthaler, A., A. E. Dekas, C. T. Brown, S. K. Goffredi, T. Embaye and V. J. Orphan (2008). ”Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics.” Proceedings of the National Academy of Sciences of the United States 105(19): 7052-7057.
42. Rothenberg, S. E., R. F. Ambrose, and J. A. Jay (2008) ”Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA” Environmental Pollution 154: 32-45
43. Rothenberg, S. E., X. Feng, B. Dong, L. Shang, R. Yin and X. Yuan (2011). ”Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies.” Environmental Pollution 159(5): 1283-1289.
44. Rothenberg, S. E., and X. Feng (2012) ”Mercury cycling in a flooded rice paddy”, Journal of Geophysical Research.” vol. 117
45. Rothenberg, S. E., L. Windham-Myers and J. E. Creswell (2014). ”Rice methylmercury exposure and mitigation: a comprehensive review.” Environmental Research 133: 407-423.
46. Rothenberg, S. E., M. Anders, N. J. Ajami, J. F. Petrosino and E. Balogh (2016). ”Water management impacts rice methylmercury and the soil microbiome.” Science of the Total Environment 572: 608-617.
47. Rothenberg, S. E., R. Yin, J. P. Hurley, D. P. Krabbenhoft, Y. Ismawati and a. A. D. Chuan Hong (2017). ”Stable mercury isotopes in polished rice (Oryza sativa L.) and Hair from Rice Consumers.” Environmental Science & Technology.
48. Schaefer, J. K., and F. M. M. Morel (2009) ”High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.” Nature Geoscience 2: 123-126,
49. Schaefer, J. K., S. S. Rocks, W. Zheng, L. Liang, B. Gu, and F. M. Morel (2011) ”Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria.” Proceedings of the National Academy of Sciences of the United States 108: 8714-8719
50. Spry, D. J., and J. G. Wiener (1991). ”Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review.” Environmental Pollution 71: 243-304,
51. St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, K. G. Beaty, N. S. Bloom and R. J. Flett (1994). ”Importance of wetlands as sources of methyl mercury to boreal forest ecosystems.” Canadian Journal of Fisheries and Aquatic Sciences 51(5): 1065-1076.
52. Stein, E. D., Y. Cohen and A. M. Winer (1996). ”Environmental distribution and transformation of mercury compounds.” Critical Reviews in Environmental Science and Technology 26: 1-43.
53. Stenico, V., L. Baffoni, F. Gaggìa and B. Biavati (2014). ”Validation of candidate reference genes in Bifidobacterium adolescentis for gene expression normalization.” Anaerobe 27: 34-39.
54. Su, Y.-B., W.-C. Chang, H.-C. Hsi and C.-C. Lin (2016). ”Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.” Chemosphere 154: 375-384.
55. Ullrich, S. M., T. W. Tanton, and S. A. Abdrashitova (2001). ”Mercury in the aquatic environment: a review of factors affecting Methylation. ” Critical Reviews in Environmental Science and Technology 31 :241-293
56. UNEP (2008). ”The global atmospheric mercury assessment: sources, emissionis and transport.”
57. UNEP (2013). ”The global mercury assessment 2013: sources, emissions, releases and environmental transport.”
58. UNEP (2015). ”Global mercury modelling: updates of modelling results in the global mercury assessment 2013.”
59. Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman (2002). ”Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.” Genome Biology 3(7): research0034.0031.
60. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers and H. O. Smith (2004). ”Environmental genome shotgun sequencing of the Sargasso Sea.” Science 304(5667): 66-74.
61. Wang, Q., W. Shen and Z. Ma (2000). ”Estimation of mercury emission from coal combustion in China.” Environmental Science & Technology 34(13): 2711-2713.
62. Wang, X., Z. Ye, B. Li, L. Huang, M. Meng, J. Shi and G. Jiang (2014). ”Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.” Environmental Science & Technology 48(3): 1878-1885.
63. WHO (2010). ”Action is needed on chemicals of major public health concern.”
64. Wiener, J. G., B. C. Knights, M. B. Sandheinrich, J. D. Jeremiason, M. E. Brigham, D. R. Engstrom, L. G. Woodruff, W. F. Cannon, and S. J. Balogh (2006). ”Mercury in soils, lakes, and fish in voyageurs national park (Minnesota): Importance of Atmospheric Deposition and Ecosystem Factors.” Environmental Science & Technology 40: 6261-6268
65. Windham-Myers, L., Fleck, J.A., Ackerman J.T., Marvin-DiPasquale, M., Stricker, C.A., Heim, W.A., Bachand, P.A.M., Eagles-Smith, C.A., Gill, G., Stephenson, M.and C.N. Alpers (2014a). ”Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study.” Science of the Total Environment 484:221-231.
66. Windham-Myers, L., M. Marvin-DiPasquale, A. S. C, J. L. Agee, H. K. L and E. Kakouros (2014b). ”Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production.” Science of the Total Environment 484: 300-307.
67. Windham-Myers, L., M. Marvin-DiPasquale, E. Kakouros, J. L. Agee, L. H. Kieu, C. A. Stricker, J. A. Fleck and J. T. Ackerman (2014c). ”Mercury cycling in agricultural and managed wetlands of California, USA: Seasonal influences of vegetation on mercury methylation, storage, and transport.” Science of The Total Environment 484: 308-318.
68. Yu, R.-Q., J. R. Flanders, E. E. Mack, R. Turner, M. B. Mirza and T. Barkay (2012). ”Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in Freshwater River Sediments.” Environmental Science & Technology 46(5): 2684-2691.
69. Yu, R.-Q., J. R. Reinfelder, M. E. Hines and T. Barkay (2013). ”Mercury methylation by the methanogen methanospirillum hungatei.” Applied and Environmental Microbiology: 6325–6330.
70. Zhang, H., Feng, X., Larssen, T., Qiu, G. and R.D. Vogt (2010a). ”In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. ” Environmental Health Perspectives 118, 1183-1188.
71. Zhang, H., X. Feng, T. Larssen, LihaiShang and P. Li (2010b). ”Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain.” Environmental Science & Technology 44(12): 4499-4504.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明