參考文獻 |
1. Zhibin, Z. and Z. Guoquan, Investigations of the collection efficiency of an electrostatic precipitator with turbulent effects. Aerosol Science and Technology, 1994. 20(2): p. 169-176.
2. Anderson, J.O., J.G. Thundiyil, and A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 2012. 8(2): p. 166-75.
3. Dockery, D.W., Health effects of particulate air pollution. Annals of Epidemiology, 2009. 19(4): p. 257-63.
4. Mülhopt, S., M. Dilger, S. Diabaté, C. Schlager, T. Krebs, R. Zimmermann, J. Buters, S. Oeder, T. Wäscher, and C. Weiss, Toxicity testing of combustion aerosols at the air–liquid interface with a self-contained and easy-to-use exposure system. Journal of Aerosol Science, 2016. 96: p. 38-55.
5. Stone, V., S. Hankin, R. Aitken, K. Aschberger, A. Baun, F. Christensen, T. Fernandes, S.F. Hansen, N.I.B. Hartmann, and G. Hutchinson, Engineered nanoparticles: Review of health and environmental safety (ENRHES). Project final report. 2010, European Commission.
6. Brook, R.D., S. Rajagopalan, C.A. Pope, J.R. Brook, A. Bhatnagar, A.V. Diez-Roux, F. Holguin, Y. Hong, R.V. Luepker, and M.A. Mittleman, Particulate matter air pollution and cardiovascular disease. Circulation, 2010. 121(21): p. 2331-2378.
7. Pope 3rd, C., D.V. Bates, and M.E. Raizenne, Health effects of particulate air pollution: time for reassessment? Environmental Health Perspectives, 1995. 103(5): p. 472.
8. Barnes, P.J., Small airways in COPD. New England Journal of Medicine, 2004. 350: p. 2635-2636.
9. Bowler, R.P., P.J. Barnes, and J.D. Crapo, The role of oxidative stress in chronic obstructive pulmonary disease. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2004. 1(2): p. 255-277.
10. Hart, J.E., F. Laden, E.A. Eisen, T.J. Smith, and E. Garshick, Chronic obstructive pulmonary disease mortality in railroad workers. Occupational and Environmental Medicine, 2009. 66(4): p. 221-226.
11. Hylkema, M., P. Sterk, W. De Boer, and D. Postma, Tobacco use in relation to COPD and asthma. European Respiratory Journal, 2007. 29(3): p. 438-445.
12. EPA, D., Integrated science assessment for particulate matter. US Environmental Protection Agency Washington, DC, 2009.
13. Cancer, I.A.f.R.o., IARC: Diesel engine exhaust carcinogenic. Press Release, 2012(213).
14. Cancer, I.A.f.R.o., IARC: Outdoor air pollution a leading environmental cause of cancer deaths. 2013: International Agency for Research on Cancer.
15. BeruBe, K., M. Aufderheide, D. Breheny, R. Clothier, R. Combes, R. Duffin, B. Forbes, M. Gaca, A. Gray, I. Hall, M. Kelly, M. Lethem, M. Liebsch, L. Merolla, J.P. Morin, J. Seagrave, M.A. Swartz, T.D. Tetley, and M. Umachandran, In vitro models of inhalation toxicity and disease. The report of a FRAME workshop. Altern Lab Anim, 2009. 37(1): p. 89-141.
16. Hartung, T., Thoughts on limitations of animal models. Parkinsonism & Related Disorders, 2008. 14: p. S81-S83.
17. Maier, K.L., F. Alessandrini, I. Beck-Speier, T.P. Josef Hofer, S. Diabaté, E. Bitterle, T. Stöger, T. Jakob, H. Behrendt, and M. Horsch, Health effects of ambient particulate matter—biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures. Inhalation Toxicology, 2008. 20(3): p. 319-337.
18. Carlson, C., S.M. Hussain, A.M. Schrand, L. K. Braydich-Stolle, K.L. Hess, R.L. Jones, and J.J. Schlager, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 2008. 112(43): p. 13608-13619.
19. Chairuangkitti, P., S. Lawanprasert, S. Roytrakul, S. Aueviriyavit, D. Phummiratch, K. Kulthong, P. Chanvorachote, and R. Maniratanachote, Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicology In Vitro, 2013. 27(1): p. 330-338.
20. Hussain, S.M., A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, and J.J. Schlager, The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicological Sciences, 2006. 92(2): p. 456-463.
21. Grabinski, C., S. Hussain, K. Lafdi, L. Braydich-Stolle, and J. Schlager, Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon, 2007. 45(14): p. 2828-2835.
22. Blank, F., B.M. Rothen-Rutishauser, S. Schurch, and P. Gehr, An optimized in vitro model of the respiratory tract wall to study particle cell interactions. Journal of Aerosol Medicine, 2006. 19(3): p. 392-405.
23. Teeguarden, J.G., P.M. Hinderliter, G. Orr, B.D. Thrall, and J.G. Pounds, Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicological Sciences, 2007. 95(2): p. 300-312.
24. Drescher, D., G. Orts-Gil, G. Laube, K. Natte, R.W. Veh, W. Österle, and J. Kneipp, Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry, 2011. 400(5): p. 1367.
25. Kittler, S., C. Greulich, J. Gebauer, J. Diendorf, L. Treuel, L. Ruiz, J. Gonzalez-Calbet, M. Vallet-Regi, R. Zellner, and M. Köller, The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. Journal of Materials Chemistry, 2010. 20(3): p. 512-518.
26. Panas, A., C. Marquardt, O. Nalcaci, H. Bockhorn, W. Baumann, H.-R. Paur, S. Mülhopt, S. Diabaté, and C. Weiss, Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology, 2012. 7(3): p. 259-273.
27. Treuel, L., M. Malissek, J.S. Gebauer, and R. Zellner, The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem, 2010. 11(14): p. 3093-3099.
28. Aufderheide, M. and U. Mohr, CULTEX—an alternative technique for cultivation and exposure of cells of the respiratory tract to airborne pollutants at the air/liquid interface. Experimental and Toxicologic Pathology, 2000. 52(3): p. 265-270.
29. Paur, H.-R., S. Mülhopt, C. Weiss, and S. Diabaté, In vitro exposure systems and bioassays for the assessment of toxicity of nanoparticles to the human lung. Journal für Verbraucherschutz und Lebensmittelsicherheit, 2008. 3(3): p. 319-329.
30. Müller, L., P. Comte, J. Czerwinski, M. Kasper, A.C. Mayer, P. Gehr, H. Burtscher, J.-P. Morin, A. Konstandopoulos, and B. Rothen-Rutishauser, New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. Environmental Science and Technology, 2010. 44(7): p. 2632-2638.
31. Lenz, A.G., E. Karg, B. Lentner, V. Dittrich, C. Brandenberger, B. Rothen-Rutishauser, H. Schulz, G.A. Ferron, and O. Schmid, A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Particle and Fibre Toxicology, 2009. 6: p. 32.
32. Comouth, A., H. Saathoff, K.-H. Naumann, S. Muelhopt, H.-R. Paur, and T. Leisner, Modelling and measurement of particle deposition for cell exposure at the air–liquid interface. Journal of Aerosol Science, 2013. 63: p. 103-114.
33. Desantes, J., X. Margot, A. Gil, and E. Fuentes, Computational study on the deposition of ultrafine particles from Diesel exhaust aerosol. Journal of Aerosol Science, 2006. 37(12): p. 1750-1769.
34. Tippe, A., U. Heinzmann, and C. Roth, Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. Journal of Aerosol Science, 2002. 33(2): p. 207-218.
35. Rach, J., J. Budde, N. Mohle, and M. Aufderheide, Direct exposure at the air-liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. Journal of Applied Toxicology, 2014. 34(5): p. 506-15.
36. Aufderheide, M., S. Scheffler, N. Möhle, B. Halter, and D. Hochrainer, Analytical in vitro approach for studying cyto-and genotoxic effects of particulate airborne material. Analytical and Bioanalytical Chemistry, 2011. 401(10): p. 3213-3220.
37. Saffari, H., A. Malugin, H. Ghandehari, and L.F. Pease, Electrostatic deposition of nanoparticles into live cell culture using an electrospray differential mobility analyzer (ES-DMA). Journal of Aerosol Science, 2012. 48: p. 56-62.
38. Volckens, J., L. Dailey, G. Walters, and R.B. Devlin, Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environmental Science and Technology, 2009. 43(12): p. 4595-4599.
39. Luo, C.-H., W.-M.G. Lee, Y.-C. Lai, C.-Y. Wen, and J.-J. Liaw, Measuring the fractal dimension of diesel soot agglomerates by fractional Brownian motion processor. Atmospheric Environment, 2005. 39(19): p. 3565-3572.
40. Ku, B.K. and A.D. Maynard, Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science, 2006. 37(4): p. 452-470.
41. Venkataraman, S., J.L. Hedrick, Z.Y. Ong, C. Yang, P.L.R. Ee, P.T. Hammond, and Y.Y. Yang, The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011. 63(14): p. 1228-1246.
42. Yang, H., C. Liu, D. Yang, H. Zhang, and Z. Xi, Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology, 2009. 29(1): p. 69-78.
43. Chen, S.-C., J. Wang, H. Fissan, and D.Y. Pui, Exposure assessment of nanosized engineered agglomerates and aggregates using Nuclepore filter. Journal of Nanoparticle Research, 2013. 15(10): p. 1955.
44. Cheng, M., G. Xie, M. Yang, and D. Shaw, Experimental characterization of chain-aggregate aerosol by electrooptic scattering. Aerosol Science and Technology, 1991. 14(1): p. 74-81.
45. Colbeck, I., B. Atkinson, and Y. Johar, The morphology and optical properties of soot produced by different fuels. Journal of Aerosol Science, 1997. 28(5): p. 715-723.
46. Gratton, S.E., P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, and J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 2008. 105(33): p. 11613-11618.
47. George, S., S. Lin, Z. Ji, C.R. Thomas, L. Li, M. Mecklenburg, H. Meng, X. Wang, H. Zhang, and T. Xia, Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. American Chemical Society Nano, 2012. 6(5): p. 3745-3759.
48. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 2007. 73(6): p. 1712-1720.
49. Li, Y., H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, and H. Gao, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences, 2013. 110(30): p. 12295-12300.
50. Li, C., S. Liu, and Y. Zhu, Determining ultrafine particle collection efficiency in a nanometer aerosol sampler. Aerosol Science and Technology, 2010. 44(11): p. 1027-1041.
51. Schmidt-Ott, A., New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol Science, 1988. 19(5): p. 553559-557563.
52. McMurry, P.H., X. Wang, K. Park, and K. Ehara, The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Science and Technology, 2002. 36(2): p. 227-238.
53. Ehara, K., C. Hagwood, and K.J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. Journal of Aerosol Science, 1996. 27(2): p. 217-234.
54. Rissler, J., M.E. Messing, A.I. Malik, P.T. Nilsson, E.Z. Nordin, M. Bohgard, M. Sanati, and J.H. Pagels, Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Science and Technology, 2013. 47(7): p. 792-805.
55. Deutsch, W., Bewegung und ladung der elektrizitätsträger im zylinderkondensator. Annalen der Physik, 1922. 373(12): p. 335-344.
56. Park, K., F. Cao, D.B. Kittelson, and P.H. McMurry, Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science and Technology, 2003. 37(3): p. 577-583.
57. Rissler, J., E. Swietlicki, A. Bengtsson, C. Boman, J. Pagels, T. Sandström, A. Blomberg, and J. Löndahl, Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 2012. 48: p. 18-33.
58. Dixkens, J. and H. Fissan, Development of an electrostatic precipitator for off-line particle analysis. Aerosol Science & Technology, 1999. 30(5): p. 438-453.
59. Fujitani, Y., Y. Sugaya, M. Hashiguchi, A. Furuyama, S. Hirano, and A. Takami, Particle deposition efficiency at air–liquid interface of a cell exposure chamber. Journal of Aerosol Science, 2015. 81: p. 90-99.
60. 方緯宸, 以 COMSOL Multiphysics 模擬氣懸微粒於靜電集塵式細胞株暴露系統中之運動軌跡. 中央大學環境工程研究所學位論文, 2013: p. 1-99.
61. Hinds, W.C., Aerosol technology: properties, behavior, and measurement of airborne particles. 1999. Wiley: New York.
62. Zelenyuk, A. and D. Imre, On the effect of particle alignment in the DMA. Aerosol Science and Technology, 2007. 41(2): p. 112-124.
63. Li, M., G.W. Mulholland, and M.R. Zachariah, The effect of alignment on the electric mobility of soot. Aerosol Science and Technology, 2016. 50(10): p. 1003-1016.
64. Kasper, G. and D.T. Shaw, Comparative size distribution measurements on chain aggregates. Aerosol Science and Technology, 1982. 2(3): p. 369-381.
65. Cooperman, P., A new theory of precipitator efficiency. Atmospheric Environment (1967), 1971. 5(7): p. 541-551.
66. Leonard, G., M. Mitchner, and S. Self, Experimental study of the effect of turbulent diffusion on precipitator efficiency. Journal of Aerosol Science, 1982. 13(4): p. 271-284.
67. Park, S.J. and S.S. Kim, Effects of particle space charge and turbulent diffusion on performance of plate–plate electrostatic precipitators. Journal of Electrostatics, 1998. 45(2): p. 121-137. |