摘要(英) |
The sedimentation tank is mainly controlled according to the settlement characteristics of the suspended solids, but the traditional sedimentation test results are not timed. The modified camera image analysis method can not measure the suspended solids concentration of only about 200 mg / L or so, which is only applicable to the secondary sedimentation tank with a high concentration of about 5000 mg / L. Therefore, there is no effective basis for the operation control in the primary settling tank. Therefore, this study aims to develop a method for measuring the suspended solids concentration and sedimentation characteristics of the primary settling tank. Using the multi-point continuous scanning absorption spectrum, the absorption spectra were used to establish the formula of suspension solid concentration, and then the sedimentation characteristics of suspended solids were obtained by multiplying continuous scanning data. We found that the estimation formula for the concentration of suspended solids established by regression at band 660-679 nm with different concentrations is suitable for measuring the concentration of suspended solids in the Kaolin, Bentonite and Montmorillonite made of artificial water samples. Using the suspended solids concentration estimation formula substitution the first 30 minutes of continuous scanning absorption spectroscopy data. The concentration of suspended solids at 1 cm and 4 cm below the surface was changed with time to calculate the sedimentation rate at different concentration ratios. According to the settlement speed successfully calculated under the water 10 cm, 50 cm and 70 cm concentration percentage change with time. And draws the settlement characteristic curve of the position, that is, according to the settlement characteristic curve to obtain the hydraulic retention time to control the overflow rate, as the sedimentation tank operation control basis. |
參考文獻 |
1.Allen T. et al,“Particle Size Measurement,”Vol.4 ,Chapman and hall,USA (1990).
2.Brindley George W.,“Structural mineralogy of clays,” Clays and Clay Minerals ,Vol. 1, pp. 33-43(1952).
3.Bohren Craig F. et al,“Absorption and Scattering of Light by Small Particles,”John Wiley&Sons Inc, USA (1983).
4.Dearnaley M.P.,“Direct measurements of settling velocities in the owen tube: A comparison with gravimetric analysis,”Journal of Sea Research,Volume 36, pp.41-47 (1996)
5.Edwin T.E. ,“Surface Water Monitoring,” pp. 1-7(1985).
6.Hinrich L. Bohn et al. ,“Soil Chemistry,”John Wiley&Sons Inc , USA , p. 136
(2001).
7.Handscomb C.S. et al.,“A new model for the drying of droplets containing suspended solids,”Chemical Engineering Science , Vol. 64,pp. 628-637(2009).
8.Hazzab et al.,“Measurement and modeling of the settling velocity of isometric
Particles,”Powder Technology ,Vol. 184, pp. 105-113,(2008).
9.Hassan Usman Jamo et al.,“Structural analysis and surface morphology of,” Science World Journal , Vol. 9, pp. 33-37 (2014).
10.Liliya Khatmullina et al.,“Settling velocity of microplastic particles of regular
shapes,”Marine Pollution Bulletin ,Vol. 114,pp. 871-880(2017).
11.Maurice Cary Powers,“A new roundness scale for sedimentary particles,”Journal of Sedimentary Research,Vol. 23, pp. 117-119(1953).
12.Miloslav Hartman et al.,“Free Settling of Nonspherical Particles,”Industrial &Engineering Chemistry Research ,Vol. 33,pp. 1979–1983(1994).
13.Miklas Scholz,“Primary Treatment,”Wetlands for Water Pollution Control (Second Edition), pp. 27–35(2015).
14.Pouet M.-F. et al,“Physical and aggregate properties,”Techniques and Instrumentation in Analytical Chemistry , Vol. 27, pp. 145–162 (2007).
15.Samuel W. Karickhoff et al. ,“Optical absorption spectra of clay minerals, ”,Clays and Clay Minerals ,Vol. 21,pp. 59-70(1973)
16.Swamee P.K., Ojha C.S.,“Drag coefficient and fall velocity of nonspherical Particles,”Hydraulic Engineering , Vol. 117, pp. 660–667(1991).
17.Sorensen C. M.,“Light Scattering by Fractal Aggregates:A Review,”Aerosol Science and Technology , Vol. 35,pp. 648–687 (2001).
18.Wickramasinghe NC ,“Light Scattering Functions for Small Particles with Applications in Astronomy,” John Wiley&Sons Inc ,USA (1973).
19.Wu Jiunn-Lin et al.,“Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers:Empirical Relationship between Reflectance and Turbidity and Total Solids,”Sensors (Basel),Vol.14,pp. 22670–22688 (2014).
20.呂金泉,“汙水處理廠規畫設計及操作維護技術手冊”,曉園出版社,臺北市(1992)。
21.胡念英,“污水處理廠沉澱池操控用SS沉澱特性自動量測裝置之發展與應用”,國立中央大學,碩士論文(2008)。
22.陳信豪,“應用廢水水質自動監測系統於污水處理廠操控之研究”,國立中央大學,碩士論文(2008)。
23.陳致維,“利用連續多次掃描程序建立以分光光度計 量測 SS 濃度與水力停留時間方法之研究”,國立中央大學,碩士論文,(2012)。
24.張阜權、孫榮山及唐偉國,光學,新竹市:凡異出版社 (1998)。
25.富技環境工程有限公司能見度簡介。
取自http://www.fk-st.com/nengjiandu1.html。
26.劉鴻慶,“懸浮顆粒沉澱特性量測技術與裝置之發展與建立”,國立中央大學,碩士論文(2009)。
27.羅文偉、李孫榮、張錦松、陳健民及曾如娟。環工單元操作。台北市:高立圖書有限公司(1998)。
28.羅家麒,“連續流循序批分式活性污泥系統自動控制策略發展與系統建立:好氧相線上即時監測系統攝氧率方法建立與溶氧控制之研究”,國立中央大學,碩士論文(2004)。
29.中華民國行政院環境保護署環境檢驗所檢測方法水中總溶解固體及懸浮固體檢測方法-103~105 ℃乾燥,2013年1月15日,取自
https://www.niea.gov.tw/niea/pdf/WATER/W21058A.pdf。 |