參考文獻 |
1. J. A. Jacquez, and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460-470 (1955).
2. J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399-410 (1993).
3. R. Yeo, R. Rykowski, D. Kreysar, and K. Chittim, "The imaging sphere—the first appearance meter?," Proc. The 5th Oxford Conference on Spectroscopy, 87-103 (2006)
4. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for led lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
5. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white leds,” Opt. Express 16, 20060-20066 (2008).
6. M. Lindemann, R. Maass, and G. Sauter, “A brief history of traceable goniophotometry at ptb,” Light Eng. 20 (2012).
7. J. M. Slater, “A recording goniophotometer,” J. Opt. Soc. Am. 25, 218-223 (1935).
8. P. Moon, and J. Laurence, “Construction and test of a goniophotometer,” J. Opt. Soc. Am. 31, 130-139 (1941).
9. P. Marx, “New goniophotometers for lighting-engineering laboratories,” Light Eng. 5, 32-36 (1997).
10. G. Sauter, “Goniophotometry: New calibration method and instrument design,” Metrologia 32, 685 (1995).
11. G. Sauter, "Review on new developments in photometry," (2005)
12. M. Lindemann, R. Maass, and G. Sauter, “Robot goniophotometry at ptb,” Metrologia 52, 167 (2015).
13. Energy Star, "Program requirements for solid state lighting luminaires," in Eligibility Criteria–Version(2008).
14. Energy Star, and Eeergy Star®, "Program requirements for residential," (2010).
15. Energy Star, “About energy star,” (U.S. Environmental Protection Agency and U.S. Department of Energy). https://www.energystar.gov/about.
16. S. Chevrel, O. F. BRGM, V. Kuosmannen, E. F. GTK, R. Belocky, W. A. GBA, H. Mollat, H. G. BGR, L. Quental, and L. P. IGM, “Hyperspectral airborne imagery for mapping mining-related contaminated areas in various european environments–first results of the mineo project,” Fifth International Airborne Remote Sensing Conference, San Francisco, California 17, 20 (2001)
17. C. Fischer, and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications,” Stud. Conserv. 51, 3-16 (2006).
18. C. I. Chang, Hyperspectral imaging: Techniques for spectral detection and classification (Springer Science & Business Media, 2003).
19. G. Lu, and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed. Opt. 19, 010901-010901 (2014).
20. J. C. Harsanyi, and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sens. 32, 779-785 (1994).
21. D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process. Mag. 19, 17-28 (2002).
22. D. Manolakis, and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29-43 (2002).
23. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036-014036-7 (2007).
24. N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702-1-111702-7 (2012).
25. S. Grusche, “Basic slit spectroscope reveals three-dimensional scenes through diagonal slices of hyperspectral cubes,” Appl. Opt. 53, 4594-4603 (2014).
26. F. Lacar, M. Lewis, and I. Grierson, "Use of hyperspectral imagery for mapping grape varieties in the barossa valley, south australia," Proc. IEEE Geoscience and Remote Sensing Symposium 6, 2875-2877 (2001)
27. S. Bajwa, P. Bajcsy, P. Groves, and L. Tian, “Hyperspectral image data mining for band selection in agricultural applications,” T. ASAE 47, 895 (2004).
28. E. K. Hege, D. O′Connell, W. Johnson, S. Basty, and E. L. Dereniak, "Hyperspectral imaging for astronomy and space surviellance," Proc. SPIE′s 48th Annual Meeting Optical Science and Technology, 380-391 (2004)
29. H. Grahn, and P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons, 2007).
30. M. F. Noomen, Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage (2007).
31. D. P. Ariana, and R. Lu, “Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging,” T. ASABE 51, 705-713 (2008).
32. D.-W. Sun, Hyperspectral imaging for food quality analysis and control (Elsevier, 2010).
33. V. N. Mahajan, Optical imaging and aberrations: Ray geometrical optics (SPIE press, 1998).
34. J. M. Palmer, and B. G. Grant, The art of radiometry (SPIE Press Bellingham, WA, USA, 2010).
35. D. W. Wilson, P. D. Maker, R. E. Muller, P. Mouroulis, and J. Backlund, "Recent advances in blazed grating fabrication by electron-beam lithography," Proc. SPIE Int. Society for Optics and Photonics (2003)
36. C. Palmer, and E. G. Loewen, Diffraction grating handbook (Newport Corporation New York, 2005).
37. E. Hecht, Hecht optics (1998).
38. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964).
39. G. Wyszecki, and W. S. Stiles, Color science (Wiley New York, 1982).
40. CIE, “Selected colorimetric tables,” (Commission Internationale de l′Eclairage). http://www.cie.co.at/index.php/LEFTMENUE/index.php?i_ca_id=298.
41. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the cie 1931 color-matching functions were derived from wright-guild data,” Color Res. Appl. 22, 11-23 (1997).
42. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142-144 (1992).
43. Y. W. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Lin, and C. C. Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268-1280 (2012).
44. J. C. Stover, Optical scattering: Measurement and analysis (SPIE optical engineering press Bellingham, 1995).
45. G. Ward, R. Mistrick, E. S. Lee, A. McNeil, and J. Jonsson, "Simulating the daylight performance of complex fenestration systems using bidirectional scattering distribution functions within radiance," Proc. Annual Conference of the Illuminating Engineering Society 7, 241-261 (2011)
46. 陳彥霖,新型散射元件全場域光場量測之研究,國立中央大學光電所碩士論文,民國一百年
47. 林芸萱,二維影像融合用於 BSDF 與配光曲線之研究,國立中央大學光電所碩士論文,民國一百零五年
48. J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).
49. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of leds,” Opt. Express 17, 13918-13927 (2009).
50. T. Kuno, H. Sugiura, and N. Matoba, “A new automatic exposure system for digital still cameras,” IEEE Trans. Consum. Electron. 44, 192-199 (1998).
51. 陳宇廷,自動曝光與自動白平衡,國立臺灣大學資工所碩士論文,民國九十九年
52. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: Acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).
53. S. K. Nayar, and T. Mitsunaga, "High dynamic range imaging: Spatially varying pixel exposures," Proc. IEEE Conference on Computer Vision and Pattern Recognition 1, 472-479 (2000)
54. D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Optq. 37, 3450-3454 (1998).
55. P. Oelhafen, and J. Freeouf, “Accurate spectrometer calibration in electron spectroscopy,” J. Vac. Sci. Technol. A 1, 96-97 (1983).
56. M. Kosch, S. Mäkinen, F. Sigernes, and O. Harang, "Absolute optical calibration using a simple tungsten light bulb: Experiment," Proc. The 30th Annual European Meeting on Atmospheric Studies 50-54 (2003)
57. J. Thomson, “Determining the system function,” (Jonathan Thomson’s web journal). https://jethomson.wordpress.com/spectrometer-articles/system-unction/
58. C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white leds from 2800k to 6500k,” Opt. Express 20, 6622-6630 (2012).
59. Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular cct uniformity of phosphor converted white leds: Effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
60. 邱志煜,白光 LED 空間色偏分佈之研究,國立中央大學光電所碩士論文,民國一百零一年 |