博碩士論文 104226049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.119.120.59
姓名 樂明(Ming Le)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高光譜成像應用於屏幕複合式量測系統之研究
(The Study of Hyperspectral Imaging for Screen Imaging Synthesis System)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 不同於市售儀器量測耗時,超快速光分佈量測儀利用屏幕複合式成像系統一次擷取大範圍光強分佈,並結合待測物旋轉系統以拍攝不同角度之光強分佈,最後透過本團隊所開發之影像融合系統,可快速取得待測光源之配光曲線。
為了對光源進行色彩分佈分析,在基於此儀器之架構下,本論文提出了空間多工之新型屏幕設計,並在相機鏡頭前裝上特殊穿透式光柵,以實現高光譜成像之功能。本論文對高光譜成像量測系統提出了一套影像融合演算法,並針對系統之波長定位、均勻度校正及頻率響應校正皆提出了解決方案。在未來,本儀器僅需透過更換屏幕,與光柵的使用與否,即可在短時間內同時量測光源之強度與色彩分佈。
摘要(英)
In contrast to commercialized machine that have time-wasting measurement issue, Ultrafast Optical Goniometer (UOG) utilizes Screen Imaging Synthesis (SIS) system to acquire a wide range of optical distribution in one-shot. Combining Object under Test (OUT) system, the SIS system can capture different angle of light distribution. Finally, by using the imaging fusion algorithm developed by our team, light distribution curve can be acquired in short period of time.
In order to analyze color distribution of a light source, this thesis proposes a new screen design with spatial multiplexing, and arranges a special transmitting grating in front of the lens to achieve the Hyperspectral Imaging (HSI) measurement. This thesis proposes an imaging fusion algorithm for HIS measurement, and offers a solution for wavelength calibration, uniformity correction and frequency response correction. In the future, UOG can rapidly measure the intensity and color distribution of a light source, through the screen changing and the using of grating.
關鍵字(中) ★ 高光譜成像
★ BSDF
★ 配光曲線
★ 屏幕複合式成像系統
關鍵字(英)
論文目次
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 配光曲線儀(Goniophotometer) 2
1-3 高光譜成像(Hyperspectral Imaging) 4
1-4 論文大綱 8
第二章 原理介紹 10
2-1 輻射學(Radiometry) 10
2-1-1 平方反比定理(Inverse Square Law) 14
2-1-2 餘弦三次方定理(Cosine-third law) 15
2-1-3 餘弦四次方定理(Cosine-fourth law) 16
2-2 閃耀光柵(Blazed Grating) 18
2-3 相對色溫(Correlated Color Temperature) 20
2-4 正規化相關係數(Normalized Correlation Coefficient) 23
2-5 雙向散射函數 24
第三章 超快速光分佈量測儀(Ultrafast Optical Goniometer) 26
3-1 系統架構 26
3-2 自動控制流程 29
3-2-1 自動曝光時間偵測(Automatic Exposure) 31
3-2-2 高動態影像(High Dynamic Range Image)處理 32
3-3 影像融合演算法簡介 34
3-4 腳踏車燈配光曲線量測結果與比較 40
3-5 結論 41
第四章 高光譜成像量測系統 43
4-1 基本原理介紹 43
4-2 波長定位 49
4-3 高光譜成像量測系統演算法 52
4-3-1 高光譜立方體獲取之方法 55
4-3-2 三維(θ,φ,λ)高光譜立方體計算方法 63
4-4 結論 69
第五章 高光譜成像量測系統校正與驗證 70
5-1 餘弦三次方校正 70
5-2 均勻度與頻率響應校正 71
5-3 驗證系統-與一維色彩量測結果比較 74
5-3-1 系統校正函數之修正 75
5-3-2 半球封裝形式之 LED 分析及驗證 79
5-3-3 半球加高封裝形式之 LED 分析及驗證 83
5-3-4 無透鏡敷形封裝形式之 LED 分析及驗證 86
5-3-5 碗杯封裝形式之 LED 分析及驗證 90
5-4 結論 94
第六章 結論 96
參考文獻 98
中英名詞對照表 102
參考文獻
1. J. A. Jacquez, and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460-470 (1955).
2. J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399-410 (1993).
3. R. Yeo, R. Rykowski, D. Kreysar, and K. Chittim, "The imaging sphere—the first appearance meter?," Proc. The 5th Oxford Conference on Spectroscopy, 87-103 (2006)
4. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for led lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
5. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white leds,” Opt. Express 16, 20060-20066 (2008).
6. M. Lindemann, R. Maass, and G. Sauter, “A brief history of traceable goniophotometry at ptb,” Light Eng. 20 (2012).
7. J. M. Slater, “A recording goniophotometer,” J. Opt. Soc. Am. 25, 218-223 (1935).
8. P. Moon, and J. Laurence, “Construction and test of a goniophotometer,” J. Opt. Soc. Am. 31, 130-139 (1941).
9. P. Marx, “New goniophotometers for lighting-engineering laboratories,” Light Eng. 5, 32-36 (1997).
10. G. Sauter, “Goniophotometry: New calibration method and instrument design,” Metrologia 32, 685 (1995).
11. G. Sauter, "Review on new developments in photometry," (2005)
12. M. Lindemann, R. Maass, and G. Sauter, “Robot goniophotometry at ptb,” Metrologia 52, 167 (2015).
13. Energy Star, "Program requirements for solid state lighting luminaires," in Eligibility Criteria–Version(2008).
14. Energy Star, and Eeergy Star®, "Program requirements for residential," (2010).
15. Energy Star, “About energy star,” (U.S. Environmental Protection Agency and U.S. Department of Energy). https://www.energystar.gov/about.
16. S. Chevrel, O. F. BRGM, V. Kuosmannen, E. F. GTK, R. Belocky, W. A. GBA, H. Mollat, H. G. BGR, L. Quental, and L. P. IGM, “Hyperspectral airborne imagery for mapping mining-related contaminated areas in various european environments–first results of the mineo project,” Fifth International Airborne Remote Sensing Conference, San Francisco, California 17, 20 (2001)
17. C. Fischer, and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications,” Stud. Conserv. 51, 3-16 (2006).
18. C. I. Chang, Hyperspectral imaging: Techniques for spectral detection and classification (Springer Science & Business Media, 2003).
19. G. Lu, and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed. Opt. 19, 010901-010901 (2014).
20. J. C. Harsanyi, and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sens. 32, 779-785 (1994).
21. D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process. Mag. 19, 17-28 (2002).
22. D. Manolakis, and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29-43 (2002).
23. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036-014036-7 (2007).
24. N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702-1-111702-7 (2012).
25. S. Grusche, “Basic slit spectroscope reveals three-dimensional scenes through diagonal slices of hyperspectral cubes,” Appl. Opt. 53, 4594-4603 (2014).
26. F. Lacar, M. Lewis, and I. Grierson, "Use of hyperspectral imagery for mapping grape varieties in the barossa valley, south australia," Proc. IEEE Geoscience and Remote Sensing Symposium 6, 2875-2877 (2001)
27. S. Bajwa, P. Bajcsy, P. Groves, and L. Tian, “Hyperspectral image data mining for band selection in agricultural applications,” T. ASAE 47, 895 (2004).
28. E. K. Hege, D. O′Connell, W. Johnson, S. Basty, and E. L. Dereniak, "Hyperspectral imaging for astronomy and space surviellance," Proc. SPIE′s 48th Annual Meeting Optical Science and Technology, 380-391 (2004)
29. H. Grahn, and P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons, 2007).
30. M. F. Noomen, Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage (2007).
31. D. P. Ariana, and R. Lu, “Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging,” T. ASABE 51, 705-713 (2008).
32. D.-W. Sun, Hyperspectral imaging for food quality analysis and control (Elsevier, 2010).
33. V. N. Mahajan, Optical imaging and aberrations: Ray geometrical optics (SPIE press, 1998).
34. J. M. Palmer, and B. G. Grant, The art of radiometry (SPIE Press Bellingham, WA, USA, 2010).
35. D. W. Wilson, P. D. Maker, R. E. Muller, P. Mouroulis, and J. Backlund, "Recent advances in blazed grating fabrication by electron-beam lithography," Proc. SPIE Int. Society for Optics and Photonics (2003)
36. C. Palmer, and E. G. Loewen, Diffraction grating handbook (Newport Corporation New York, 2005).
37. E. Hecht, Hecht optics (1998).
38. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964).
39. G. Wyszecki, and W. S. Stiles, Color science (Wiley New York, 1982).
40. CIE, “Selected colorimetric tables,” (Commission Internationale de l′Eclairage). http://www.cie.co.at/index.php/LEFTMENUE/index.php?i_ca_id=298.
41. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the cie 1931 color-matching functions were derived from wright-guild data,” Color Res. Appl. 22, 11-23 (1997).
42. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142-144 (1992).
43. Y. W. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Lin, and C. C. Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268-1280 (2012).
44. J. C. Stover, Optical scattering: Measurement and analysis (SPIE optical engineering press Bellingham, 1995).
45. G. Ward, R. Mistrick, E. S. Lee, A. McNeil, and J. Jonsson, "Simulating the daylight performance of complex fenestration systems using bidirectional scattering distribution functions within radiance," Proc. Annual Conference of the Illuminating Engineering Society 7, 241-261 (2011)
46. 陳彥霖,新型散射元件全場域光場量測之研究,國立中央大學光電所碩士論文,民國一百年
47. 林芸萱,二維影像融合用於 BSDF 與配光曲線之研究,國立中央大學光電所碩士論文,民國一百零五年
48. J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).
49. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of leds,” Opt. Express 17, 13918-13927 (2009).
50. T. Kuno, H. Sugiura, and N. Matoba, “A new automatic exposure system for digital still cameras,” IEEE Trans. Consum. Electron. 44, 192-199 (1998).
51. 陳宇廷,自動曝光與自動白平衡,國立臺灣大學資工所碩士論文,民國九十九年
52. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: Acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).
53. S. K. Nayar, and T. Mitsunaga, "High dynamic range imaging: Spatially varying pixel exposures," Proc. IEEE Conference on Computer Vision and Pattern Recognition 1, 472-479 (2000)
54. D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Optq. 37, 3450-3454 (1998).
55. P. Oelhafen, and J. Freeouf, “Accurate spectrometer calibration in electron spectroscopy,” J. Vac. Sci. Technol. A 1, 96-97 (1983).
56. M. Kosch, S. Mäkinen, F. Sigernes, and O. Harang, "Absolute optical calibration using a simple tungsten light bulb: Experiment," Proc. The 30th Annual European Meeting on Atmospheric Studies 50-54 (2003)
57. J. Thomson, “Determining the system function,” (Jonathan Thomson’s web journal). https://jethomson.wordpress.com/spectrometer-articles/system-unction/
58. C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white leds from 2800k to 6500k,” Opt. Express 20, 6622-6630 (2012).
59. Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular cct uniformity of phosphor converted white leds: Effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
60. 邱志煜,白光 LED 空間色偏分佈之研究,國立中央大學光電所碩士論文,民國一百零一年
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明