博碩士論文 942202021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.144.47.27
姓名 羅謹賢(Jin-shian Luo)  查詢紙本館藏   畢業系所 物理學系
論文名稱 金屬叢集的融化現象
(Melting scenario in metallic clusters)
相關論文
★ 帶電膠體系統之液態-液態/固態相變研究★ 低濃度電解質在奈米管內異常的擴散和導電性
★ 一價和多價叢集原子的熱穩定現象★ 金屬與合金分子叢集的結構
★ 物理系統之能量與焓分佈之統計力學研究★ 膠體系統平衡相域與動態凝聚之研究
★ 合金金屬叢集的溫度效應★ 介面膠體叢聚現象的理論研究
★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究★ 膠體相圖之理論計算
★ 膠體、棒狀粒子混合系統之相圖的理論分析★ 利用時間序列的統計方法研究金屬叢集的動力學
★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們使用定溫Brownian-type 分子動力學來分析研究(合金)金屬叢集的溫度效應。

比熱CV與δ(Lindemann-like parameter) 這兩個普遍在巨觀系統中運用來描述固—液相變的物理量,當運用在金屬叢集這樣的小系統中,對融化溫度(Tmelt) 的預測始終不一致。而這背後的機制現在已能被深入探討。

而為了能更深入了解融化現象,我們加入了速度自相關函數(velocity autocorrelation function) 以及它的傅立業轉換(即power spectrum),進而發現此物理量與CV主峰所預測的融化溫度範圍一致。

本論文中選取了兩個合金叢集系統Ag1Cu13、Au1Cu13並與一純金屬叢集系統Cu14做深入的比較分析。由這三個不同的金屬叢集,我們可以歸納出不同相對位置的溫度效應以及合金系統中異質原子所造成的差異性。

由分析這些動態資訊,我們觀察到:在低溫區間(T? Tmelt) 有原子的遷移行為(migrational relocation),以及在中溫區間(T< Tmelt) 與分子間交換行為(permutation) 的相互疊加,而在高溫區間(T? Tmelt) 原子的行為會呈現liquid-like或甚至gas-like。
摘要(英) The isothermal Brownian-type molecular dynamics simulation has been applied to study the melting behavior of bimetallic clusters. It was found that the specific heat and Lindermann-like parameter customarily used in bulk system to describe solid-liquid transition show incongruity in the prediction of melting temperature, T_{melt}. The underlying mechanisms that lead to the incompatibility of melting temperatures deduced from these two quantities were analyzed further. To gain insight into the melting behavior, we calculated in addition the velocity autocorrelation function and its Fourier transform, the power spectrum, to extract separately the melting temperature. It appears that the melting temperature inferred from the latter quantities is closer to that deduced from the principal peak position of specific heat. Two bimetallic clusters, Ag₁Cu₁₃ and Au₁Cu₁₃, were selected for thorough investigation. For the cluster morphology, we carried out a quantitative comparison of Ag₁Cu₁₃, Au₁Cu₁₃ and Cu₁₄ to locate the atomic distribution and contrasted between a bimetallic cluster and a pure cluster to learn the thermal reaction of atoms, in particular the impurity atom in the bimetallic cluster. On analyzing the dynamical data, we observed at a lower temperature (T≪T_{melt}) migrational relocation of atoms whose dynamics was superimposed by permutations between atoms at an intermediate temperature (T
關鍵字(中) ★ 合金金屬叢集
★ 金屬叢集
★ 融化
關鍵字(英) ★ bimetallic cluster
★ melting
★ velocity autocorrelation function
★ metallic cluster
論文目次 1 Introduction 1
2 Methodology: Simulation and Theory 2
2.1 Simulation algorithm: isothermal Brownian-type molecular dynamics 2
2.1.1 Equation of motion 2
2.1.2 Many-body Gupta potential 4
2.1.3 Thermal and geometric properties: specific heat and Lindemann-like parameter 4
2.1.4 Dynamical property: velocity autocorrelation function 5
3 Numerical results and discussion 7
3.1 Pure cluster Cu14 7
3.1.1 Specific heat and relative rms bond length fluctuation parameter 7
3.1.2 Velocity autocorrelation function and power spectrum 9
3.2 Bimetallic cluster Ag1Cu13 10
3.2.1 Specific heat and relative rms bond length fluctuation parameter 10
3.2.2 Velocity autocorrelation function and power spectrum 12
3.3 Bimetallic cluster Au1Cu13 13
3.3.1 Velocity autocorrelation function and power spectrum 13
4 Conclusion 13
5 References 14
Figure Captions 16
參考文獻 G.E. Lopez and D.L. Freeman, J. Chem. Phys. 98, 1428 (1993).
M.J. López, P.A. Marcos, and J.A. Alonso, J. Chem. Phys. 104, 1056 (1996).
E.B. Krissinel and J. Jellinek, Chem. Phys. Lett. 272, 301 (1997); Int. J. Quantum Chem. 62, 185 (1997).
S.P. Huang and P.B. Balbuena, J. Phys. Chem B 106, 7225 (2002).
Subramanian K.R.S. Sankaranarayanan, Venkat R. Bhethanabotla and Babu Joseph, Phys. Rev. B 71, 195415 (2005).
K. Michaelian and I.L. Garzón, Eur. Phys. J. D 34, 183 (2005).
Tsung-Wen Yen, S.K. Lai, N. Jakse and J.L. Bretonnet, Phys. Rev. B 75,165420 (2007).
C. Borgs and R. Kotecky, J. Stat. Phys. 79, 43 (1995).
S. Nosé, J. Chem. Phys. 81, 511 (1984); Mol. Phys. 52, 255 (1984).
D. Kusnezov, A. Bulgac and W. Bauer, Ann. Phys. (N.Y.) 204, 155 (1990); A. Bulgac and D. Kusnezov, Phys. Rev. A 42, 5045 (1990).
F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys. 112, 2301 (2000).
C. Mottet, G. Tréglia and B. Legrand, Phys. Rev. B 46, 16018 (1992).
D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
指導教授 賴山強(Shank Kiong Lai) 審核日期 2007-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明