以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:45 、訪客IP:18.223.209.114
姓名 陳冠羽(Kuan-Yu Chen) 查詢紙本館藏 畢業系所 水文與海洋科學研究所 論文名稱 利用影像處理技術辨識藻礁範圍
(Identification of algae reefs using image processing techniques)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究分析無人空拍機所產出之正射影像,並應用影像處理技術來辨識桃園藻礁的礁體範圍。在辨識礁體的部分,本研究主要利用k-means分類法進行礁體分類辨識,並探討不同影像技術對辨識率的改善效果及演算效率;利用色彩強度、紋理分析及直方圖等化的方式來濾除非礁體成分,並調整影像亮度分佈,達到改善辨識率的目的。本研究隨機抽取兩影像區塊並分別三種方法:(一) 色彩強度分類、(二)以色彩強度和紋理分類、(三)以色彩強度、紋理和調整影像亮度,來測試三個方法的藻礁辨識以及演算時間。結果顯示單只以色彩強度對影像進行分類時,礁體與濕沙不容易被區分。若以色彩和紋理特徵進行分類時其兩影像的結果平均分類準確率可達83%,但此方法在影像亮度不均勻時準確率較差。方法三在改善影像亮度不均勻的問題後,其平均分類準確率為89%,為三個方法中最佳。本研究也對不同解析度影像進行分類測試時,發現解析度為9.5公分時具有較佳的分類準確率和較短的演算時間。最後本研究也利用2016年與2017年的影像,來比較在同樣區域內礁體範圍的差異。結果顯示,與先前單以人工標註的方式相比本研究所提出的方法,在劃分藻礁範圍時可以有效的減少人工成本並提高分類的準確率。 摘要(英) The purpose of the present study is to analyze UAV-images and apply image processing techniques to identify the regions of algal reefs. In this study, we applied the K-means cluster method for reef classification. We also investigated the accuracy and computational efficiency of different image techniques in reef identification. Color intensity, texture analysis, and histogram equalization were used to filter out the non-reef components. We also adjusted the image’s brightness to improve the recognition rate. Two images were randomly selected for testing the computational efficiency. Three combinations of image analysis methods based on the following three main groups were tested: a) the color intensity only, b) the color intensity and texture of image, and c) the color intensity, texture of image and brightness. Our results show that the reef and wet sand cannot be easily distinguished when only the color intensity is used for classification. The accuracy of the reef identification using group b has significantly improved to 83%, with slightly low accuracy when the brightness distribution is uneven. After the brightness is adjusted, the accuracy of applying group c increases to 89%, which is the best method among the three groups. We also found that images with resolution of 9.5 cm can significantly reduce the computational cost with better accuracy. Finally, we applied the improved image processing technique to compare the change of the algal-reef region along Taoyuan coast between year 2016 and 2017. Our result proved that the improved image processing technique can significantly reduce the labor cost and increased the classification accuracy, as compare to the previous manually annotation of the reef region. 關鍵字(中) ★ 影像辨識
★ 藻礁
★ 影像分類關鍵字(英) 論文目次 中文摘要 I
ABSTRACT II
誌謝 III
目次 IV
圖次 V
表次 VII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 8
1-4 本文架構 9
第二章 影像處理與分析方法 11
2-1 影像處理方法介紹 11
2-2 影像處理流程 18
2-3 影像處理結果的評斷標準 19
2-4 影像資料來源 20
第三章 結果與討論 29
3-1 不同影像處理方法測試結果 29
3-2 不同地面解析度及分類數量之影響 33
3-3 案例應用 36
第四章 結論與建議 57
4-1 結論 57
4-2 建議 58
參考文獻 59參考文獻 1. ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P. & SUSSTRUNK, S. 2012. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell., 34, 2274-2282.
2. ALESHEIKH, A. A., GHORBANALI, A. & NOURI, N. 2007. Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, 4, 61-66.
3. ANIL K, J. & FARROKHNIA, F. 1991. Unsupervised texture segmentation using Gabor filters. Pattern Recogn., 24, 1167-1186.
4. BOAK, E. H. & TURNER, I. L. 2005. Shoreline Definition and Detection: A Review. Journal of Coastal Research, 688-703.
5. DOLAN, R., HAYDEN, B. P., MAY, P. & MAY, S. K. 1980. The reliability of shoreline change measurements from aerial photographs. Shore and Beach, 48, 22–29.
6. HAPKE, C. & RICHMOND, B. 2000. Monitoring Beach Morphology Changes Using Small-Format Aerial Photography and Digital Softcopy Photogrammetry. Environmental Geosciences, 7, 32-37.
7. HOONHOUT, B. M., RADERMACHER, M., BAART, F. & VAN DER MAATEN, L. J. P. 2015. An automated method for semantic classification of regions in coastal images. Coastal Engineering, 105, 1-12.
8. HUNG, P.-Y., SHEN, S.-M. & CHEN, P.-H. 2006. Interpreting shorelines on the large-scale orthogonals, a case study of the sand-gravel beaches, Taitung. Journal of Geographical Research, 44.
9. LILLESAND, T., KIEFER, R. W. & CHIPMAN, J. 2015. Remote Sensing and Image Interpretation, 7th Edition, Wiley.
10. LLOYD, S. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theor., 28, 129-137.
11. MANCINI, F., DUBBINI, M., GATTELLI, M., STECCHI, F., FABBRI, S. & GABBIANELLI, G. 2013. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sensing, 5, 6880.
12. PAPAKONSTANTINOU, A., TOPOUZELIS, K. & PAVLOGEORGATOS, G. 2016. Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data. ISPRS International Journal of Geo-Information, 5, 75.
13. QUARTEL, S., ADDINK, E. A. & RUESSINK, B. G. 2006. Object-oriented extraction of beach morphology from video images. International Journal of Applied Earth Observation and Geoinformation, 8, 256-269.
14. 林宗儀 & 翁健三 2013. 臺灣海岸濱線變遷分析. 第35屆海洋工程研討會論文集
15. 林宗儀, 陳華玟 & 陳勉銘 2011. 尋找近期臺灣沙質海岸侵蝕熱點. 工程環境會刊, 77-92.
16. 張憲國, 吳政杰 & 陳蔚瑋 2012. 應用多頻譜衛星影像於灘線辨識與灘線變遷分析. 第34屆海洋工程研討會論文集.
17. 梁平, 莊永忠, 吳治達, 詹進發 & 廖泫銘 2011. 多源遙測影像於宜蘭海岸濱線變遷偵測之應用. Journal of Geographical Research, 55, 47-68.
18. 許民陽 2012. 臺灣西北海岸的藻礁. 地質季刊, 31.
19. 連美綺, 吳治達, 莊永忠 & 廖學誠 2011. 應用馬可夫模式分析桃園海岸地區土地利用變遷之研究. 工程環境會刊, 71-85.
20. 桃園市政府農業局,2017,「104年觀新藻礁生態保育委託專業服務勞務採購案期末報告(I)」,國立中央大學.
21. 桃園市政府環境保護局,2017,「桃園市海岸生態保護白皮書」,桃園市政府.
22. 地質力學研究室網站,http://geomech.ncu.edu.tw/index.html.指導教授 黃志誠(Zhi-Cheng Huang) 審核日期 2017-11-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare