參考文獻 |
[1] Q. Wang, Y. Tao, X. Qiao, J. Chen, D. Ma, C. Yang, and J. Qin, "High-Performance, Phosphorescent, Top-Emitting Organic Light-Emitting Diodes with p–i–n Homojunctions", Adv. Funct. Mater. 21, 1681–1686 (2011).
[2] J. Jang, and S. H. Han, "High-performance OTFT and its application", Curr. Appl. Phys. 6, e17–e21 (2006).
[3] L.M. Chen, Z. Xu, Z. Hong, and Y. Yang, "Interface investigation and engineering-achieving high performance polymer photovoltaic devices", J. Mater. Chem. 20, 2575–2598 (2010).
[4] I. D. W. Samuel* and G. A. Turnbull, "Organic Semiconductor Lasers", Chem. Rev. 107, 1272-1295 (2007).
[5] E. Ahmed, T. Earmme, and S. A. Jenekhe, "New Solution-Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs", Adv. Funct. Mater. 21, 3889–3899 (2011).
[6] T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, "Efficient Phosphorescent Polymer Yellow-Light-Emitting Diodes Based on Solution-Processed Small Molecular Electron Transporting Layer", ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[7] J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review", Semicond. Sci. Technol. 26, 034001 (2011).
[8] D. Comoretto, Organic and Hybrid Photonic Crystals, Springer (2015).
[9] D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, "Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities", Phys. Rev. Lett. 82, 3316 (1999).
[10] R. J. Holmes, and S. R. Forrest, "Strong exciton-photon coupling in organic materials", Org. Electronic. 8, 77 (2007).
[11] V. N. Mahajan, Fundamentals of Geometrical Optics, SPIE Press (2014).
[12] Newport Corporation, Richardson Gratings Technical Note 11-Deter-mination of the Blaze Wavelength, Newport Corporation (2012)
[13] J. W. Goodman, Introduction to Fourier Optics, Roberts and Company Publishers (2005).
[14] C. L. Mulder, K. Celebi, K. M. Milaninia, and M. A. Baldo, "Saturated and efficient blue phosphorescent organic light emitting devices with Lambertian angular emission", Appl. Phys. Lett. 90, 211109 (2007)
[15] M. T. Lee , M. R. Tseng, "Efficient, long-life and Lambertian source of top-emitting white OLEDs using low-reflectivity molybdenum anode and co-doping technology", Curr. Appl. Phys., 616–619 (2008)
[16] C. H. chen and H. W. Huang, OLED: Organic Electroluminescence Materials & Devices, Wu-Nan Book Inc. (2005)
[17] D. Z. Garbuzov, V. Bulovic, P. E. Burrows, S. R. Forrest, "Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films", Chem. Phys. Lett. 249, 433–437 (1996).
[18] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers", Appl. Phys. Lett. 91, 253504 (2007).
[19] H. B. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. H. Jeong, K. H. Cho, and Y. J. Yi, " The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N′N,N′-bis(1-naphthyl)-N,N′N,N′-diphenyl-1,1′ 1,1′-biphenyl- 4,4′4,4′-diamine interfaces", Appl. Phys. Lett. 93, 043308 (2008).
[20] L. S. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode", Appl. Phys. Lett. 70, 152 (1997).
[21] J. G. Simmons, "Richardson-Schottky Effect in Solids", Phys. Rev. Lett. 15, 967-968 (1965)
[22] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, and A. Rubino, "The Relation between the Electrical, Chemical, and Morphological Properties of Indium−Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance", J. Phys. Chem. C 111, 17404-17408 (2007).
[23] R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proc. R. Soc. London Ser. A 119, 173 (1928).
[24] A. J. Heeger, I. D. Parker, Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling", Syn. Metals 67, 23-29 (1994)
[25] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, "Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer", Adv. Funct. Mater. 22, 3261–3266 (2012).
[26] D. Yokoyama, M. Moriwake, C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films", J. Appl. Phys.103, 123104 (2008).
[27] S. H. Tang, M. H. Liu, and Y. K. Su, "Stable and highly bright white organic light-emitting diode based on 4,4′4′,4′′4-tris(N-3-methylphenyl-N-phenyl-amino)-triphenylamine", J. Appl. Phys. 100, 083111 (2006)
[28] L. S. Li, M. Guan, G. H. Cao, Y. Y. Li, Y. P. Zeng, "Highly efficient and stable organic light-emitting diodes employing MoO3-doped perylene-3, 4, 9, 10-tetra-carboxylic dianhydride as hole injection layer", Appl. Phys. A 99, 251–254 (2010).
[29] J. F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, "Conjugated-Polymer-Based Lateral Heterostructures Defined by High-Resolution Photolithography (SI)", Adv. Funct. Mater. 20, 2825-2832 (2010).
[30] Hamamatsu Photonics K.K., "Digital CMOS Camera C11440-22CU Instruction manual", Hamamatsu Photonics K.K. (2016).
[31] Olympus Corporation, Data Sheet UPLSAPO 40X2, Olympus Corporation. |