博碩士論文 942202025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:3.12.163.76
姓名 簡紹文(Shao-Wun Jian)  查詢紙本館藏   畢業系所 物理學系
論文名稱 鎳含量對於銦-鎳奈米複合材料電傳輸與磁阻現象之影響
(The influence on electric transportation and magnetic resistance properties in In-Ni nanocopact with different nickel compostition.)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 採用銦與鎳兩種奈米微粒,以各種不同質量比例調配之後均勻混合,施加特定的壓力,製成In/Ni奈米壓合材料,為樣品命名為(In)100-x(Ni)x_CD,其中x=0、50、70、80、85、90及95。由於鎳的導電性比銦差,因此可視為絕緣體,用來增加銦微粒之間的距離,來探討磁性奈米壓合材料的電子傳輸機制。調製樣品內銦與鎳奈米微粒質量比例,鎳微粒在外加磁場下影響電子的傳輸,造成磁阻現象。
當樣品中鎳含量在70%以下時,電子主要的傳導路徑為銦微粒所形成的導電通路,因此電性較相似。鎳含量大於80%時,電子的傳導機制變為銦-鎳-銦間傳導,甚至變成鎳與鎳之間傳導為主要通路。
在樣品的電性為金屬性時,由於主要的傳導路徑在銦微粒中,而銦為金屬材料,推測其磁阻現象為常磁阻;隨著鎳含量的增加,當樣品的電性為非金屬性時,假如主要的傳導為鎳微粒間相互傳導,所以我們以穿隧磁阻來解釋其磁阻現象。在高外加磁場區發現磁阻有緩慢增加的趨勢,而穿隧磁阻並不能解釋此現象,所以我們猜測其原因可能是微粒中的常磁阻所貢獻,因此在非金屬性樣品的磁阻現象為穿隧磁阻與常磁阻所貢獻的結果。
摘要(英) The nanoparticle compacts were fabricated by evenly mixing indium and nickel nanoparticles with several different mass ratios. The nanoparticle compacts were fabricated on the same pressure. The nanocompacts of 1-x/x mass ratio for In/Ni was called as (In)1-x(Ni)x_CD. Its relative mass density with respect to the bulk material would be used to denote the compacting density (CD). Because the conductivity of nickel is less than indium, we can treat the nickel particles as insulator. We can use nickel particles to increase of the distance between indium particles. We probe into the transport mechanism of the magnetic nanocompact material in different distance of indium particle. In different mass ratios, the nickel particle in magnetic field influences the transportation more, cause magnetic resistance.
If the nickel composition in the sample is less than 70%, the electrons is transported by the route formed on indium particle. Then the electric property is similar. If the nickel composition in sample is more than 85%, the transport mechanism becomes indium-nickel- indium or nickel-nickel transportation.
When the electric property of sample is metallic, the major conductive route is in indium particles. Because indium is metal, we suggest that the magnetic resistance is ordinary magnetoresistivity (OMR). When the nickel composition is increasing, the electric property of sample becomes non-metallic. If the major transportation is become nickel-nickel tunneling, we explain the magnetic resistance with tunneling magnetoresistivity (TMR).In high applied magnetic field, the magnetic resistance is slowly increasing as applied magnetic field is increasing . TMR can not make a description of this result, so we guess that the reason could be OMR in particle. Then, the magnetic resistance is contributed by TMR and OMR.
關鍵字(中) ★ 電傳輸與磁阻現象之影響 關鍵字(英) ★ In-Ni nanocopact with different nickel compostit
論文目次 論文摘要..................................................................................................Ⅰ致謝......................................................................................................... Ⅳ
目錄......................................................................................................... Ⅴ
圖目..........................................................................................................Ⅶ
表目..........................................................................................................XI
第一章 奈米材料簡介....................................................………………..1
1.1 奈米粒子的物理特性..................................................................1
1.2 奈米複合材料介紹……..............................................................5
1.3 實驗起因…..................................................................................6
第二章 樣品製作、實驗儀器與量測方式介紹........................................7
2.1 奈米粒子製作方式.......……...................................................…7
2.2 奈米複合樣品製作............….....................................................11
2.3 量測儀器介紹…………………………………………………13
2.4 粒徑分析………………………………………………………17
2.5 銦與鎳奈米粒子間間距………………………………………23
第三章 電子傳輸機制…........................................................................27
3-1 電子穿隧傳輸............................................................................28
3-2 熱激發電子跳耀傳輸................................................................33
第四章 電阻實驗分析與物理意義探討................................................41
4-1 電阻率與溫度的關係分析........................................................41
4-2 電阻模型擬合 ...................………. ……….............................46
第五章 磁阻機制…………………………............................................50
5.1磁阻的定義與種類……….........................................................50
5.2磁阻的種類及成因.....................................................................53
5.3 穿隧性磁阻........................……................................................60
第六章 磁阻實驗結果分析....................................................................64
6.1 金屬性樣品的磁阻討論…........................................................64
6.2 非金屬性樣品的磁阻討論...............……….............................72
6.3 磁阻機制擬合.............………...................................................80
第七章 結論............................................................................................87
參考文獻..................................................................................................89
參考文獻 [1] 林品全,Ag/PbO 奈米複合材料的電子傳輸與異常磁阻探討,
中央大學碩士論文(2004)
[2] 謝詩蔚,Ag/Co 奈米複合材料的電子傳輸探討,中央大學碩士
論文(2004)
[3] 廖敏婷,Ag/Ni 奈米壓合材料的電性滲導與磁阻探討,中央大學
碩士論文(2005)
[4] 李素昀,驅動電壓調控奈米複合材料的電傳導特性,中央大學
碩士論文(2006)
[5] N. F. Mott and E. A. Davis, Electronic Processes In Non-Crystalline Materials, Chap.2 (Second Edition 1979)
[6] C. Kittle 原著,洪連輝、劉立基、魏榮君編譯,固態物理學導論,第七版,p328
[7] Richard W. Robinett, Quantum Mechanics,p262
[8] David Bohm, Quantum Theory,p286
[9] B. A. Smith, D. M. Waters, A. E. Faulhaber, M. A. Kreger,and J. Z. Zhang, J. Sol.-Gel. Sci. Tech. 9, 125 (1997)
[10]D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Chap.6 (Cambridge Univ. Press,1997)
[11]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dan, and F. Petroff, Phys. Rev. Lett. 61 2472(1988)
[12]F. Petroff, A. Barthelemy, D. H. Mosca, D. K. Lottis, A. Fert, P. A.Schroeder, W. P. Pratt, Jr. R. Loloee and S. Lequien, Phys. Rev. B44,5355(1991)
[13]S. S. P. Parkin, R. Bhadra and K. P. Roche, Phys. Rev. Lett, 66, 2152 (1991)
[14] S. S. P. Parkin, Appl. Phys. Lett.,60, 512(1992)
[15] A. Berkowitz, A. P. Young, J. R. Mitchell, S. Zhang, M. J. Carey, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas, Phys. Rev. Lett.68, 3745(1992)
[16] J. Q. Xiao, J. S. Jiang and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992)
[17] N.García, M.Muñoz, and Y.-W.Zhao, Phys. Rev.Lett.82,2923 (1999)
[18]周雄、吳俊斌,物理雙月刊廿六卷四期,581(2004)
[19] S.A.Solin, Tineke Thio, D.R.Hinese, and J.J.Heremans, Science.289,1530(2000)
[20] R.Xu, A.Husmann, T.F.Rosenbaum, M.-L.Saboungi, J.E.Enderby, and P.B.Littlewood, Nature.390,57(1997)
[21] S.L.Bud,ko, P.C.Canfield, C.H.Mielke, and A.H.Lacerda, Phys. Rev. B57,13624(1998)
[22] A.A.Abrikosov, Phys. Rev. B58,2788(1998)
[23] A.A.Abrikosov, Phys. Rev. B60,4231(1999)
指導教授 李文献(Wen-Hsien Li) 審核日期 2007-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明