參考文獻 |
[1] S. W. Pang, “High-aspect-ratio Structures for MEMS”, MRS. Bulletin, Vol. 26, No. 4, pp. 307-308, 2010.
[2] C. Wang, L. Taherabadi, G. Jia, M. Madou, Y. Yeh and B. Dunn, “C-MEMS for the Manufacture of 3D Microbatteries”, Electrochemical and Solid-State Letters, Vol. 7, pp. A435-A438, 2004.
[3] K. Lee, H. C. Lee, D.-S. Lee and H. Jung, “Drawing Lithography: Three‐Dimensional Fabrication of an Ultrahigh‐Aspect‐Ratio Microneedle”, Advanced Material, Vol. 22, No. 4, pp. 483-486, 2010.
[4] Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lücke, D. D. Denton and K. F. Böhringer, “High-aspect Ratio Submicrometer Needles for Intracellular Applications”, Journal of Micromechanics and Microengineering, Vol. 13, No. 4, pp. S91-S95, 2003.
[5] H. Guckel, “High-aspect-ratio Micromachining via Deep X-ray Lithography”, Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593, 1998.
[6] H. Lu, B. Pillans, J.-C. Lee and J.-B. Lee, “High Aspect Ratio Air Core Solenoid Inductors Using an Improved UV-LIGA Process with Contrast Enhancement Material”, Microsystem Technologies, Vol. 13, NO. 3-4, pp. 237-243, 2007.
[7] M. Gower, “Laser Micromachining for Manufacturing MEMS Devices”, Proceedings of SPIE, Vol. 4559, pp. 53-59, 2001.
[8] M. F. Aimi, M. P. Rao, N. C. Macdonald, A. S. Zuruzi and D. P. Bothman, “High-aspect-ratio Bulk Micromachining of Titanium”, Nature Materials, Vol. 3, No. 2, 2004.
[9] M. Goeppert-Mayer, “Elementary Processes with Two Quantum Jumps”, Annals of Physics, Vol. 9, No. 2, pp. 273-294, 1931.
[10] W. Kaiser, and C. G. B. Garrett, “Two-photon Excitation in CaF2:Eu2+”, Physical Review Letters, Vol. 7, No. 6, pp. 229-231, 1961.
[11] W. Denk, J. H. Stricker and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy”, Science, Vol. 248, No. 4951, pp. 73-76, 1990.
[12] N. Kjærgaard, L. Hornekær, A. M. Thommesen, Z. Videsen and M. Drewsen, “Isotope Selective Loading of an Ion Trap Using Resonance-enhanced Two-Photon Ionization”, Applied Physics B: Lasers and Optics, Vol. 71, No. 2, pp. 207-210, 2000.
[13] D. Gao, R. R. Agayan, H. Xu, M. A. Philbert and R. Kopelman, “Nanoparticles for Two-photon Photodynamic Therapy in Living Cells”, Nano letters, Vol 6, No.11, pp. 2383-2386, 2006.
[14] S. Maruo, O. Nakamura and S. Kawata, “Three-dimensional Microfabrication with Two-photon-absorbed Photopolymerization”, Optics letters, Vol. 22, No. 2, pp. 132-134, 1997.
[15] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[16] L. Li, R. R. Gattass, E. Gershgoren, H. Hwang and J. T. Fourkas, “Achieving λ/20 Resolution by One-color Initiation and Deactivation of Polymerization”, Science, Vol. 324, pp. 910-913, 2009.
[17] J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka and S. Kawata, “Improving Spatial Resolution of Two-photon Microfabrication by Using Photoinitiator with High Initiating Efficiency”, Applied Physics Letters, Vol. 90, No. 13, 2007.
[18] H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real Three-dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption”, Optics Letters, Vol. 25, pp. 1110-1112, 2000.
[19] E. Brasselet, M. Malinauskas, A. Zukauskas and S. Juodkazis, “Photopolymerized Microscopic Vortex Beam Generators: Precise Delivery of Optical Orbital Angular Momentum”, Applied Physics Letters, Vol. 97, No. 21, 2010.
[20] J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin and H. B. Sun, “Embellishment of Microfluidic Devices via Femtosecond Laser Micronanofabrication for Chip Functionalization”, Lab on a Chip, Vol. 10, No. 15, pp. 1993-1996, 2010.
[21] C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari and D. Karalekas, “On the Design and Fabrication by Two-photon Polymerization of a Readily Assembled Micro-valve”, International Journal of Advanced Manufacturing Technology, Vol. 48, No. 5-8, pp. 435-441, 2010.
[22] M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Lagana, G. Cerullo and R. Osellame, “Two-photon Laser Polymerization: from Fundamentals to Biomedical Application in Tissue Engineering and Regenerative medicine”, Journal of Applied Biomaterials & Functional Materials, Vol. 10, No. 1, pp. 56-66, 2012.
[23] K. Obata, A. El-Tamer, L. Koch, U. Hinze and B. N. Chichkov, “High-aspect 3D Two-photon Polymerization Structuring with Widened Objective Working Range (WOW-2PP)”, Light-Science & Applications, Vol. 2, 2013.
[24] W. Xiong, Y. Liu, Y. S. Zhou, D. W. Li, L. Jiang, J. F. Silvaun and Y. F. Lu, “Laser-Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication”, Advanced Materials, Vol. 28, No. 10, pp. 2002-2009, 2016.
[25] H. Xia, J. Wang, Y. Tian, Q. D. Cen, X. B. Du, Y. L. Zhang, Y. He and H. B. Sun, “Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization”, Advanced Materials, Vol. 22, No. 29, pp. 3204-3207, 2010.
[26] C. Y. Liao, M. Bouriau, P. L. Baldeck, J C. Leon, C. Masclet and T. T. Chung, “Two-dimensional Slicing Method to Speed up the Fabrication of Micro-objects based on Two-photon Polymerization”, Applied Physics Letters, Vol. 91, No. 3, 2007.
[27] L. Yang, J. Li, Y. Hu, C. Zhang, Z. Lao, W. Haung and J. Chu, “Projection Two-photon Polymerization Using a Spatial Light Modulator”, Optics Communications, Vol. 331, pp. 82-86, 2014.
[28] J.-I. Kato, N. Takeyasy, Y. Adachi, H.-B. Sun and S. Kawata, “Multiple-spot Parallel Processing for Laser Micronanofabrication”, Applied Physics Letters, Vol. 86, No. 4, 2005.
[29] S. Kawata, H. B. Sun, T. Tanaka and K. Takada, “Finer Features for Functional Microdevices - Micromachines can be Created with Higher Resolution Using Two-photon Absorption”, Nature, Vol. 412, No. 6848, pp. 697-698, 2001.
[30] H. B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and Its Applications to Micro–Nano Devices and Systems”, Journal of lightwave technology, Vol. 21, No. 3, pp.624-633, 2003.
[31] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Compensation of Spherical Aberration Influences for Two-photon Polymerization Patterning of Large 3D Scaffolds”, Applied Physics a - Materials Science & Processing, Vol. 121, No. 1, pp. 187-191, 2015.
[32] M. Bieda, F. Bouchard and A. F. Lasagni, “Two-photon Polymerization of a Branched Hollow Fiber Structure with Predefined Circular Pores”, Journal of Photochemistry and Photobiology a-Chemistry, Vol. 319, pp. 1-7, 2016.
[33] L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu and B. N. Chichkov, “Parallel Direct Laser writing of Micro-optical and Photonic Structures Using Spatial Light Modulator”, Optics and Lasers in Engineering, Vol. 70, pp. 26-32, 2015.
[34] A. L. Bogdanov, and S. S. Peredkov, “Use of SU-8 Photoresist for Very High Aspect Ratio X-ray Lithography”, Microelectronic Engineering, Vol. 53, pp. 493-496, 2000.
[35] J. Kenntner, V. Altapova, T. Grund, F. J. Pantenburg, J. Meiser, T. Baumbach and J. Mohr, “Fabrication and Characterization of Analyzer Gratings with High Aspect Ratios for Phase Contrast Imaging Using a Talbot Interferometer”, AIP Conference Proceedings, Vol. 1437, No. 1, 2012.
[36] R. Anthony, E. Laforge, D. P. Casey, J. F. Rohan and C. O’Mathuna, “High-aspect-ratio Photoresist Processing for Fabrication of High Resolution and Thick Micro-windings”, Journal of Micromechanics and Microengineering, Vol. 26, No.10, 2016.
[37] V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner and J. Brugger, “Direct Writing Laser of High Aspect Ratio Epoxy Microstructures”, Journal of Micromechanics and Microengineering, Vol. 21, No. 1, 2010.
[38] Nanoscribe company, “Dip-in Laser Lithography (DiLL)”, Data Sheet, January 2012.
[39] Nanoscribe company, “News and Reviews April 2012”, News, April 2012.
[40] T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography”, Advanced Materials, Vol. 24, No. 20, pp. 2710-2714, 2012.
[41] M. Suzuki, T. Sawa, T. Takahashi and S. Aoyagi, “Ultrafine Three-Dimensional (3D) Laser Lithographic Fabrication of Microneedle and Its Application to Painless Insertion and Blood Sampling Inspired by Mosquito”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2748- 2753, Hamburg, Germany, 2015,.
[42] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, 2000.
[43] R. F. Harik, H. Gong and A. Bernard, “5-axis Flank Milling: A State-of-the-art Review”, Computer-Aided Design, Vol. 45, No. 3, pp. 796-808, 2013.
[44] C. Y. Wu, “Arbitrary Surface Flank Milling of Fan, Compressor and Impeller Blades”, Journal of Engineering for Gas Turbines and Power, Vol. 117, No. 3, pp. 534-539, 1995.
[45] 謝岳廷,「基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究」,國立中央大學,碩士論文,民國104年。
[46] R.W. Boyd, Nonlinear Optic, Second Edition, Academic Press, San Diego, 2003.
[47] S. Maruo and S. Kawata, “Two-photon-absorbed Near-infrared Photopolymerization for Three-dimensional Microfabrication”, Journal of Microelectromechanical Systems, Vol. 7, No. 4, pp. 411-415, 1998.
[48] K. D. Belfieldm, S. Yao and M. V. Bondar, “Two-photon Absorbing Photonic Materials: From Fundamentals to Applications”, Photoresponsive Polymers I, Springer Berlin Heidelberg, pp. 97-156, 2013.
[49] D. Meshede, Optics, light and lasers: the practical approach to modern aspects of photonics and laser physics, Wiley-VCH, pp. 46-48, 2007.
[50] E. J. Galvez, “Gaussian Beams in the Optics Course”, American Journal of Physics, Vol. 74, pp. 355-361, 2006.
[51] T. W. Lim, S. H. Park and D. Y. Yang, “Contour Offset Algorithm for Precise Patterning in Two-Photon Polymerization”, Microelectronic Engineering, Vol. 77, NO. 3-4, pp. 382-388, 2005.
[52] K. S. Lee, R. H. Kim, D. Y. Yol and S. H. Park, “Advances in 3D Nano/icrofabrication Using Two-photon Initiated Polymerization”, Progress in Polymer Science, Vol. 33, No. 6, pp. 631-681, 2008.
[53] M. J. Nasse and J. C. Woehl, “Realistic Modeling of the Illumination Point Spread Function in Confocal Scanning Optical Microscopy”, Journal of the Optical Society of America A, Vol. 27, pp. 295-302, 2010.
[54] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, “Two-photon Polymerization Setup Enables Experimental Mapping and Correction of Spherical Aberrations for improved Macroscopic Structure Fabrication”, Optics Letters, Vol. 41, No. 18, pp. 4269-4272, 2016.
[55] T. W. Lim and D.-Y. Yang, “Direct Fabrication of Nano-Wrinkled 3D Microstructures using Fitfully Accumulated Two-Photon Polymerization”, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 11, pp. 2427-2431, 2015.
[56] T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, Kwang-Sup Lee and S. H. Park, “Highly Effective Three-dimensional Large-scale Microfabrication using a continuous scanning method”, Applied Physics A: Materials Science & Processing, Vol. 92, No. 3, pp. 541-545, 2008.
[57] J. Lin, X. Jing, X. Zhou, X. Zheng, R. Gao and Y. Wang, “Scaling Laws of Nanorods in Two-photon Polymerization Nanofabrication Using a Continuous Scanning Method”, AIP Advances, Vol. 6, No. 10, 2016.
[58] S. H. Park, D. Y. Yang and K. S. Lee, “Two-photon Stereolithography for Realizing Ultraprecise Three-dimensional Nano/microdevices”, Laser & Photonics Reviews, Vol. 3, No. 1-2, pp. 1-11, 2009.
[59] A. Selimis, V. Mironov and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing”, Microelectronic Engineering, Vol. 132, pp. 83-89, 2015.
[60] S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi,H. J. Kong and K. S. Lee, “Direct Nano-patterning Methods Using Nonlinear Absorption in Photopolymerization Induced by a Femtosecond Laser”, Journal of Nonlinear Optical Physics & Materials, Vol. 14 , No. 3, pp. 331-340, 2005.
[61] J.-D. Lim and Y.-G. Lee, “Improvement of Distortion Error for Fabricating Precision Microparts Using Two-photon Photopolymerization”, Journal of Micromechanics and Microengineering, Vol. 26, No. 7, 2016.
[62] M. Hafez, T. Sidler and R.-P. Salathe, “Study of the Beam Path Distortion Profiles Generated by a Two-axis Tilt Single-mirror Laser Scanner”, Optical Engineering, Vol. 42, No. 4, pp. 1048-1053, 2003.
[63] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko and M. Malinauskas, “Direct Laser Writing of 3D Polymer Micro/Nanostructures on Metallic Surfaces”, Applied Surface Science, Vol. 270, pp. 382-387, 2013.
[64] Y. H. Yu, Z. N. Tian, T. Jiang, L. G. Niu and B. R. Gao, “Fabrication of Large-scale Multilevel Phase-type Fresnel Zone Plate Arrays by Femtosecond Laser Direct Writing”, Optics Communications, Vol. 362, pp. 69-72, 2016.
[65] F. C. Wang, Y. Y. Chen, K. A. Wang and T. T. Chung, “The Development of a Long-Stroke Precision Positioning Stage for Micro Fabrication by Two-Photon Polymerization”, Journal of Laser Micro Nanoengineering, Vol. 11, No. 1, pp. 1-12, 2016.
[66] S.-H. Park, K. H. Kim, T. W. Lim, D.-Y. Yang and K.-S. Lee, “Investigation of Three-dimensional Pattern Collapse owing to Surface Tension Using an Imperfection Finite Element Model”, Microelectronic Engineering, Vol. 85, No. 2, pp. 432-439, 2007.
[67] 莊達人,VLSI製造技術,高立圖書有限公司,民國91年。
[68] C. H. Lee, T. W. Chang, K. L. Lee, J. Y. Lin and J. Wang, “Fabricating High-aspect-ratio Sub-diffraction-limit Structures on Silicon with Two-photon Photopolymerization and Reactive Ion Etching”, Applied Physics A, Vol. 79, pp. 2027-2031, 2004.
[69] Micro resist technology, “OrmoComp - UV Curable Hybrid Polymer for Moulding”, datasheet.
[70] Micro resist technology, “OrmoComp and OrmoClear FX”, datasheet.
[71] E. Käpylä, Direct Laser Writing of Polymer - Ceramic and Hydrogel Microstructures by Two-Photon Polymerization, Tampere University of Technology, Doctor Thesis, 2014.
[72] SIGMA-ALDRICH, “661732 ALDRICH”, retrieved July 5, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/661732.
[73] Y. L. Zhang, Q. D. Chen, H. Xia and H. B. Sun, “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing”, Nano Today, Vol. 5, No. 5, pp. 435-448, 2010. |