博碩士論文 104323077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.137.162.21
姓名 高健閔(Chien-Min Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於雙光子聚合技術之長軸成形法製造高深寬比結構
(Longitudinal Forming Method for Fabrication of High Aspect Ratio Structure based on Two-photon Polymerization Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統的雙光子聚合(Two-photon Polymerization, TPP)微製造技術藉由體素中較小的徑向尺寸使空間解析度可達到次微米等級。透過積層製造的方法,該技術可製作出任意且複雜外形的微結構。然而TPP微製造技術擁有如此高的空間解析度,勢必要犧牲掉整體的製造速度。對於數百微米高以上的微結構,一旦製造時間拉長,製造失敗的風險也將被大幅提升。對此本研究提出新穎的長軸成形法(Longitudinal Forming Method, LFM),使用本實驗室開發的四軸微製造系統將玻璃基板旋轉90°,即可採用線掃瞄的方式,利用體素中較長的軸向尺寸快速製造微結構。本研究設計出適用於LFM的基板載台,藉由觀察其製造的微結構外形改進LFM實驗製程。透過固定平台移動速率並改變雷射功率製作微結構,使用掃瞄式電子顯微鏡觀察各結構的尺寸,觀察結果可作為本實驗製造參數的資料庫。本論文最後利用LFM僅需10秒即可製作出高100μm、深寬比16之微結構。
摘要(英) Convention two-photon polymerization(TPP) micro-manufacturing technology could reach high spatial resolution with sub-micro level by the smaller lateral size of a voxel. Through the fabrication mechanism from additive manufacturing, TPP could realize arbitrary and complex shape of micro-structure. Therefore, it must be a trade off between high spatial resolution and total fabrication speed. As fabrication time became longer, risk about structure failure would also be enlarged. To improve this condition, the Longitudinal Forming Method(LFM) was proposed to fabricate micro-structures rapidily. Applying the homemade four-axis micro-manufacturing system allowed the glass substrate to be rotated by 90°, and the longer longitudinal size could be utilized with line scanning method. The appropriate substrate holder were designed, and the shape of structures made by the holders was observed to improve the manufacturing process. Size of structures, fabricated at fixed motion stage speed and different laser power, was measured by Scanning Electron Microscope(SEM), and the database of fabrication parameter was established through the measurement result. Finally, the research spent only 10 seconds realizing the structure with 100μm height and aspect ratio of 16.
關鍵字(中) ★ 雙光子聚合
★ 長軸成形法
★ 高深寬比
關鍵字(英) ★ Two-photon Polymerization
★ Longitudinal Forming Method
★ High Aspect Ratio
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1研究背景 1
1-2雙光子微製造技術之文獻回顧 3
1-3高深寬比結構製造之文獻回顧 8
1-4研究動機與目的 13
1-5論文架構 16
第二章 理論說明 17
2-1雙光子吸收光致聚合反應 17
2-2雙光子微製造之特徵尺寸 20
2-3雙光子微製造系統架構與加工流程 27
第三章 研究方法 34
3-1雙光子微製造技術之長軸成形法 34
3-2雷射輸出功率對結構尺寸影響之實驗方法 42
3-3高深寬比結構製作之實驗方法 44
3-4光敏樹酯調配 45
第四章 實驗結果與討論 48
4-1長軸成形雙光子微製造之微結構品質改善策略 48
4-2雷射輸出功率對結構尺寸影響之實驗結果 52
4-3高深寬比結構製作之實驗結果 58
第五章 結論與未來展望 61
5-1結論 61
5-2未來展望 61
參考文獻 63
參考文獻 [1] S. W. Pang, “High-aspect-ratio Structures for MEMS”, MRS. Bulletin, Vol. 26, No. 4, pp. 307-308, 2010.
[2] C. Wang, L. Taherabadi, G. Jia, M. Madou, Y. Yeh and B. Dunn, “C-MEMS for the Manufacture of 3D Microbatteries”, Electrochemical and Solid-State Letters, Vol. 7, pp. A435-A438, 2004.
[3] K. Lee, H. C. Lee, D.-S. Lee and H. Jung, “Drawing Lithography: Three‐Dimensional Fabrication of an Ultrahigh‐Aspect‐Ratio Microneedle”, Advanced Material, Vol. 22, No. 4, pp. 483-486, 2010.
[4] Y. Hanein, C. G. J. Schabmueller, G. Holman, P. Lücke, D. D. Denton and K. F. Böhringer, “High-aspect Ratio Submicrometer Needles for Intracellular Applications”, Journal of Micromechanics and Microengineering, Vol. 13, No. 4, pp. S91-S95, 2003.
[5] H. Guckel, “High-aspect-ratio Micromachining via Deep X-ray Lithography”, Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593, 1998.
[6] H. Lu, B. Pillans, J.-C. Lee and J.-B. Lee, “High Aspect Ratio Air Core Solenoid Inductors Using an Improved UV-LIGA Process with Contrast Enhancement Material”, Microsystem Technologies, Vol. 13, NO. 3-4, pp. 237-243, 2007.
[7] M. Gower, “Laser Micromachining for Manufacturing MEMS Devices”, Proceedings of SPIE, Vol. 4559, pp. 53-59, 2001.
[8] M. F. Aimi, M. P. Rao, N. C. Macdonald, A. S. Zuruzi and D. P. Bothman, “High-aspect-ratio Bulk Micromachining of Titanium”, Nature Materials, Vol. 3, No. 2, 2004.
[9] M. Goeppert-Mayer, “Elementary Processes with Two Quantum Jumps”, Annals of Physics, Vol. 9, No. 2, pp. 273-294, 1931.
[10] W. Kaiser, and C. G. B. Garrett, “Two-photon Excitation in CaF2:Eu2+”, Physical Review Letters, Vol. 7, No. 6, pp. 229-231, 1961.
[11] W. Denk, J. H. Stricker and W. W. Webb, “Two-photon Laser Scanning Fluorescence Microscopy”, Science, Vol. 248, No. 4951, pp. 73-76, 1990.
[12] N. Kjærgaard, L. Hornekær, A. M. Thommesen, Z. Videsen and M. Drewsen, “Isotope Selective Loading of an Ion Trap Using Resonance-enhanced Two-Photon Ionization”, Applied Physics B: Lasers and Optics, Vol. 71, No. 2, pp. 207-210, 2000.
[13] D. Gao, R. R. Agayan, H. Xu, M. A. Philbert and R. Kopelman, “Nanoparticles for Two-photon Photodynamic Therapy in Living Cells”, Nano letters, Vol 6, No.11, pp. 2383-2386, 2006.
[14] S. Maruo, O. Nakamura and S. Kawata, “Three-dimensional Microfabrication with Two-photon-absorbed Photopolymerization”, Optics letters, Vol. 22, No. 2, pp. 132-134, 1997.
[15] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34卷,1-16頁,2005。
[16] L. Li, R. R. Gattass, E. Gershgoren, H. Hwang and J. T. Fourkas, “Achieving λ/20 Resolution by One-color Initiation and Deactivation of Polymerization”, Science, Vol. 324, pp. 910-913, 2009.
[17] J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka and S. Kawata, “Improving Spatial Resolution of Two-photon Microfabrication by Using Photoinitiator with High Initiating Efficiency”, Applied Physics Letters, Vol. 90, No. 13, 2007.
[18] H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real Three-dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption”, Optics Letters, Vol. 25, pp. 1110-1112, 2000.
[19] E. Brasselet, M. Malinauskas, A. Zukauskas and S. Juodkazis, “Photopolymerized Microscopic Vortex Beam Generators: Precise Delivery of Optical Orbital Angular Momentum”, Applied Physics Letters, Vol. 97, No. 21, 2010.
[20] J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin and H. B. Sun, “Embellishment of Microfluidic Devices via Femtosecond Laser Micronanofabrication for Chip Functionalization”, Lab on a Chip, Vol. 10, No. 15, pp. 1993-1996, 2010.
[21] C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari and D. Karalekas, “On the Design and Fabrication by Two-photon Polymerization of a Readily Assembled Micro-valve”, International Journal of Advanced Manufacturing Technology, Vol. 48, No. 5-8, pp. 435-441, 2010.
[22] M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Lagana, G. Cerullo and R. Osellame, “Two-photon Laser Polymerization: from Fundamentals to Biomedical Application in Tissue Engineering and Regenerative medicine”, Journal of Applied Biomaterials & Functional Materials, Vol. 10, No. 1, pp. 56-66, 2012.
[23] K. Obata, A. El-Tamer, L. Koch, U. Hinze and B. N. Chichkov, “High-aspect 3D Two-photon Polymerization Structuring with Widened Objective Working Range (WOW-2PP)”, Light-Science & Applications, Vol. 2, 2013.
[24] W. Xiong, Y. Liu, Y. S. Zhou, D. W. Li, L. Jiang, J. F. Silvaun and Y. F. Lu, “Laser-Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication”, Advanced Materials, Vol. 28, No. 10, pp. 2002-2009, 2016.
[25] H. Xia, J. Wang, Y. Tian, Q. D. Cen, X. B. Du, Y. L. Zhang, Y. He and H. B. Sun, “Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization”, Advanced Materials, Vol. 22, No. 29, pp. 3204-3207, 2010.
[26] C. Y. Liao, M. Bouriau, P. L. Baldeck, J C. Leon, C. Masclet and T. T. Chung, “Two-dimensional Slicing Method to Speed up the Fabrication of Micro-objects based on Two-photon Polymerization”, Applied Physics Letters, Vol. 91, No. 3, 2007.
[27] L. Yang, J. Li, Y. Hu, C. Zhang, Z. Lao, W. Haung and J. Chu, “Projection Two-photon Polymerization Using a Spatial Light Modulator”, Optics Communications, Vol. 331, pp. 82-86, 2014.
[28] J.-I. Kato, N. Takeyasy, Y. Adachi, H.-B. Sun and S. Kawata, “Multiple-spot Parallel Processing for Laser Micronanofabrication”, Applied Physics Letters, Vol. 86, No. 4, 2005.
[29] S. Kawata, H. B. Sun, T. Tanaka and K. Takada, “Finer Features for Functional Microdevices - Micromachines can be Created with Higher Resolution Using Two-photon Absorption”, Nature, Vol. 412, No. 6848, pp. 697-698, 2001.
[30] H. B. Sun and S. Kawata, “Two-Photon Laser Precision Microfabrication and Its Applications to Micro–Nano Devices and Systems”, Journal of lightwave technology, Vol. 21, No. 3, pp.624-633, 2003.
[31] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Compensation of Spherical Aberration Influences for Two-photon Polymerization Patterning of Large 3D Scaffolds”, Applied Physics a - Materials Science & Processing, Vol. 121, No. 1, pp. 187-191, 2015.
[32] M. Bieda, F. Bouchard and A. F. Lasagni, “Two-photon Polymerization of a Branched Hollow Fiber Structure with Predefined Circular Pores”, Journal of Photochemistry and Photobiology a-Chemistry, Vol. 319, pp. 1-7, 2016.
[33] L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu and B. N. Chichkov, “Parallel Direct Laser writing of Micro-optical and Photonic Structures Using Spatial Light Modulator”, Optics and Lasers in Engineering, Vol. 70, pp. 26-32, 2015.
[34] A. L. Bogdanov, and S. S. Peredkov, “Use of SU-8 Photoresist for Very High Aspect Ratio X-ray Lithography”, Microelectronic Engineering, Vol. 53, pp. 493-496, 2000.
[35] J. Kenntner, V. Altapova, T. Grund, F. J. Pantenburg, J. Meiser, T. Baumbach and J. Mohr, “Fabrication and Characterization of Analyzer Gratings with High Aspect Ratios for Phase Contrast Imaging Using a Talbot Interferometer”, AIP Conference Proceedings, Vol. 1437, No. 1, 2012.
[36] R. Anthony, E. Laforge, D. P. Casey, J. F. Rohan and C. O’Mathuna, “High-aspect-ratio Photoresist Processing for Fabrication of High Resolution and Thick Micro-windings”, Journal of Micromechanics and Microengineering, Vol. 26, No.10, 2016.
[37] V. J. Cadarso, K. Pfeiffer, U. Ostrzinski, J. B. Bureau, G. A. Racine, A. Voigt, G. Gruetzner and J. Brugger, “Direct Writing Laser of High Aspect Ratio Epoxy Microstructures”, Journal of Micromechanics and Microengineering, Vol. 21, No. 1, 2010.
[38] Nanoscribe company, “Dip-in Laser Lithography (DiLL)”, Data Sheet, January 2012.
[39] Nanoscribe company, “News and Reviews April 2012”, News, April 2012.
[40] T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel and M. Wegener, “Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography”, Advanced Materials, Vol. 24, No. 20, pp. 2710-2714, 2012.
[41] M. Suzuki, T. Sawa, T. Takahashi and S. Aoyagi, “Ultrafine Three-Dimensional (3D) Laser Lithographic Fabrication of Microneedle and Its Application to Painless Insertion and Blood Sampling Inspired by Mosquito”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2748- 2753, Hamburg, Germany, 2015,.
[42] Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, 2000.
[43] R. F. Harik, H. Gong and A. Bernard, “5-axis Flank Milling: A State-of-the-art Review”, Computer-Aided Design, Vol. 45, No. 3, pp. 796-808, 2013.
[44] C. Y. Wu, “Arbitrary Surface Flank Milling of Fan, Compressor and Impeller Blades”, Journal of Engineering for Gas Turbines and Power, Vol. 117, No. 3, pp. 534-539, 1995.
[45] 謝岳廷,「基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究」,國立中央大學,碩士論文,民國104年。
[46] R.W. Boyd, Nonlinear Optic, Second Edition, Academic Press, San Diego, 2003.
[47] S. Maruo and S. Kawata, “Two-photon-absorbed Near-infrared Photopolymerization for Three-dimensional Microfabrication”, Journal of Microelectromechanical Systems, Vol. 7, No. 4, pp. 411-415, 1998.
[48] K. D. Belfieldm, S. Yao and M. V. Bondar, “Two-photon Absorbing Photonic Materials: From Fundamentals to Applications”, Photoresponsive Polymers I, Springer Berlin Heidelberg, pp. 97-156, 2013.
[49] D. Meshede, Optics, light and lasers: the practical approach to modern aspects of photonics and laser physics, Wiley-VCH, pp. 46-48, 2007.
[50] E. J. Galvez, “Gaussian Beams in the Optics Course”, American Journal of Physics, Vol. 74, pp. 355-361, 2006.
[51] T. W. Lim, S. H. Park and D. Y. Yang, “Contour Offset Algorithm for Precise Patterning in Two-Photon Polymerization”, Microelectronic Engineering, Vol. 77, NO. 3-4, pp. 382-388, 2005.
[52] K. S. Lee, R. H. Kim, D. Y. Yol and S. H. Park, “Advances in 3D Nano/icrofabrication Using Two-photon Initiated Polymerization”, Progress in Polymer Science, Vol. 33, No. 6, pp. 631-681, 2008.
[53] M. J. Nasse and J. C. Woehl, “Realistic Modeling of the Illumination Point Spread Function in Confocal Scanning Optical Microscopy”, Journal of the Optical Society of America A, Vol. 27, pp. 295-302, 2010.
[54] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, “Two-photon Polymerization Setup Enables Experimental Mapping and Correction of Spherical Aberrations for improved Macroscopic Structure Fabrication”, Optics Letters, Vol. 41, No. 18, pp. 4269-4272, 2016.
[55] T. W. Lim and D.-Y. Yang, “Direct Fabrication of Nano-Wrinkled 3D Microstructures using Fitfully Accumulated Two-Photon Polymerization”, International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 11, pp. 2427-2431, 2015.
[56] T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, Kwang-Sup Lee and S. H. Park, “Highly Effective Three-dimensional Large-scale Microfabrication using a continuous scanning method”, Applied Physics A: Materials Science & Processing, Vol. 92, No. 3, pp. 541-545, 2008.
[57] J. Lin, X. Jing, X. Zhou, X. Zheng, R. Gao and Y. Wang, “Scaling Laws of Nanorods in Two-photon Polymerization Nanofabrication Using a Continuous Scanning Method”, AIP Advances, Vol. 6, No. 10, 2016.
[58] S. H. Park, D. Y. Yang and K. S. Lee, “Two-photon Stereolithography for Realizing Ultraprecise Three-dimensional Nano/microdevices”, Laser & Photonics Reviews, Vol. 3, No. 1-2, pp. 1-11, 2009.
[59] A. Selimis, V. Mironov and M. Farsari, “Direct laser writing: Principles and materials for scaffold 3D printing”, Microelectronic Engineering, Vol. 132, pp. 83-89, 2015.
[60] S. H. Park, T. W. Lim, D. Y. Yang, S. W. Yi,H. J. Kong and K. S. Lee, “Direct Nano-patterning Methods Using Nonlinear Absorption in Photopolymerization Induced by a Femtosecond Laser”, Journal of Nonlinear Optical Physics & Materials, Vol. 14 , No. 3, pp. 331-340, 2005.
[61] J.-D. Lim and Y.-G. Lee, “Improvement of Distortion Error for Fabricating Precision Microparts Using Two-photon Photopolymerization”, Journal of Micromechanics and Microengineering, Vol. 26, No. 7, 2016.
[62] M. Hafez, T. Sidler and R.-P. Salathe, “Study of the Beam Path Distortion Profiles Generated by a Two-axis Tilt Single-mirror Laser Scanner”, Optical Engineering, Vol. 42, No. 4, pp. 1048-1053, 2003.
[63] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko and M. Malinauskas, “Direct Laser Writing of 3D Polymer Micro/Nanostructures on Metallic Surfaces”, Applied Surface Science, Vol. 270, pp. 382-387, 2013.
[64] Y. H. Yu, Z. N. Tian, T. Jiang, L. G. Niu and B. R. Gao, “Fabrication of Large-scale Multilevel Phase-type Fresnel Zone Plate Arrays by Femtosecond Laser Direct Writing”, Optics Communications, Vol. 362, pp. 69-72, 2016.
[65] F. C. Wang, Y. Y. Chen, K. A. Wang and T. T. Chung, “The Development of a Long-Stroke Precision Positioning Stage for Micro Fabrication by Two-Photon Polymerization”, Journal of Laser Micro Nanoengineering, Vol. 11, No. 1, pp. 1-12, 2016.
[66] S.-H. Park, K. H. Kim, T. W. Lim, D.-Y. Yang and K.-S. Lee, “Investigation of Three-dimensional Pattern Collapse owing to Surface Tension Using an Imperfection Finite Element Model”, Microelectronic Engineering, Vol. 85, No. 2, pp. 432-439, 2007.
[67] 莊達人,VLSI製造技術,高立圖書有限公司,民國91年。
[68] C. H. Lee, T. W. Chang, K. L. Lee, J. Y. Lin and J. Wang, “Fabricating High-aspect-ratio Sub-diffraction-limit Structures on Silicon with Two-photon Photopolymerization and Reactive Ion Etching”, Applied Physics A, Vol. 79, pp. 2027-2031, 2004.
[69] Micro resist technology, “OrmoComp - UV Curable Hybrid Polymer for Moulding”, datasheet.
[70] Micro resist technology, “OrmoComp and OrmoClear FX”, datasheet.
[71] E. Käpylä, Direct Laser Writing of Polymer - Ceramic and Hydrogel Microstructures by Two-Photon Polymerization, Tampere University of Technology, Doctor Thesis, 2014.
[72] SIGMA-ALDRICH, “661732 ALDRICH”, retrieved July 5, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/661732.
[73] Y. L. Zhang, Q. D. Chen, H. Xia and H. B. Sun, “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing”, Nano Today, Vol. 5, No. 5, pp. 435-448, 2010.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2017-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明