博碩士論文 104323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.219.151.249
姓名 吳帛軒(WU,PO-HSUAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鹽水液滴在常壓環境下乾燥過程的建模與模擬
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 噴霧乾燥技術,因為具有成本低廉、工藝簡單、適合於大規模工業化生產等優點,且容易控制粉末成型的結構,因此成了工業製程中最常用來製作功能性粉末的一種方法。由於功能性粉末的結構日漸複雜,故解析在功能性粉末製程中的噴霧乾燥技術,成了近年來工業發展的重要課題。噴霧乾燥技術理論模型的基礎,是建立在單顆液滴的乾燥及固化析出的模型。已知液滴蒸發過程的關鍵有二:蒸發過程與固化析出過程。本研究以數值模擬的方式,建立一個同時包含此兩種機制的數學模型,並使用ANSYS Fluent中的流體體積法(Volume of fluid ,VOF)來擷取介面,模擬一顆含有氯化鈉的水溶液液滴,在一個靜止的開放空間下進行的乾燥過程,並使用環境溫度為40℃、60℃ 及 80℃的條件,來探討不同環境溫度對最終形成固體顆粒結構的影響。
由模擬計算結果可得知,當環境溫度改變,由於乾燥過程的差異,使得最終形成的鹽粒結構有明顯不同。當環境溫度為40℃時,鹽粒呈均勻的實心結構;環境溫度為60℃及80℃時,鹽粒呈空心結構,且環境溫度愈高,形成外鹽殼層的孔隙率愈小、鹽殼層內外的孔隙率差距愈大,而整體殼層的厚度也會愈小。故可推測,介於40℃與60℃之間存在著一個臨界的環境溫度,使鹽粒的結構由實心固體狀,轉變為空心殼狀。且若持續提高環境溫度,則會形成一薄殼球狀的鹽粒。
摘要(英) Spray drying is one of the most commonly used methods of producing functional powders in industrial processes because of its advantages for low cost, simple process, large-scale industrial production and easy control of powder-molded structures. Due to the increasingly complex structure of functional powders, the analysis of spray-drying technology in the manufacture of functional powders has become an important issue for the development of the industry in recent years. The basis of the theoretical model of spray drying technology is based on a single droplet which undergoes the drying and precipitation processes. Droplet evaporation has two key processes: evaporation process and solidification precipitation process. This study proposes a mathematical model that considers both two mechanisms. The volume of fluid method (VOF) in ANSYS Fluent was used to capture the interface and simulate a drying process of a saline droplet in a static open space. To investigate the influence of ambient temperatures on the final structure of solid particles, simulations were performed with ambient temperature of 40℃、60℃ and 80℃, respectively.
Simulation results show that when the ambient temperature changes, due to the difference in the evaporation rate, the structure of the final salt particles is obviously different. When the ambient temperature is 40℃, the salt particles is a uniform solid structure. When the ambient temperature is 60℃ and 80℃, the salt particles are hollow structure. The higher the ambient temperature, the smaller the porosity of the outer salt shell formed, the bigger the porosity difference between the inner and outer salt shell, and the thinner of the shell thickness. Therefore, it can be speculated that there is a critical ambient temperature between 40℃ and 60℃ at which the structure of the salt particles will change from a solid particle to a hollow shell particle. Increasing the ambient temperature will result in a thin shell spherical salt particle.
關鍵字(中) ★ 噴霧乾燥
★ 蒸發
★ 固化析出
★ 流體體積法
★ 固體顆粒結構
關鍵字(英) ★ Spray drying
★ evaporation
★ solidification
★ Volume of fluid method
★ solid particle structure
論文目次 摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 XIII
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3研究目的 4
第二章 數學模型 7
2.1 問題描述 7
2.2 統御方程式 8
2.2.1體積分率方程式 8
2.2.2動量方程式 9
2.2.3連續方程式 10
2.2.4能量方程式 11
2.2.5質傳方程式 11
2.2.6液滴蒸發方程式(Hertz–Knudsen equation) 12
2.2.7固化析出方程式 13
2.3物理性質 14
2.4 邊界條件 16
2.5 初始條件 17
2.6 數值方法 18
2.6.1軟體簡介 18
2.6.2網格配置 18
2.6.3收斂條件設定 19
第三章 結果與討論 27
3.1 模擬結果與實驗比對 27
3.2環境溫度對乾燥過程的影響 30
3.2.1溫度調適階段 30
3.2.2等溫乾燥階段 31
3.2.3析出固體殼層形成階段 31
3.2.4析出固體殼層增厚乾燥階段 32
第四章 結論與未來展望 86
4.1結論 86
4.2未來展望 88
參考文獻 90
附錄一 93
參考文獻 Abuaf, N., & Staub, F. W. (1985). Drying of liquid-solid slurry droplets. General Electric, Corporate Research and Development.

Al-Jibbouri, S., & Ulrich, J. (2002). The growth and dissolution of sodium chloride in a fluidized bed crystallizer. Journal of crystal growth, 234 (1), 237-246.

Averyt, K. et al. (2011). Freshwater Use by U.S. Power Plants

Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), 335-354.

Charlesworth, D. H., & Marshall, W. R. (1960). Evaporation from drops containing dissolved solids. AIChE Journal, 6(1), 9-23.

Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of computation, 22(104), 745-762.

Medina, D. D., & Mastai, Y. (2011). Biomimetic polymers for chiral resolution and antifreeze applications. In On Biomimetics. InTech.

Dolinsky, A. A. (2001). High-temperature spray drying. Drying Technology, 19(5), 785-806.

Elperin, T., & Krasovitov, B. (1995). Evaporation of liquid droplets containing small solid particles. International Journal of Heat and Mass Transfer, 38(12), 2259-2267.

Ford, I. J. (1995). Models of crystallisation in evaporating droplets. MRS Online Proceedings Library Archive, 398.

GE, S. X., LIU, L. Y., & WANG, G. F. (2013). Application of Energy-saving Technology of No Filler Spray Cooling Tower with Free Electricity. Value Engineering, 12, 145.

Hertz, H. (1882). Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Annalen der Physik, 253(10), 177-193.


Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.

Hundy, G. F., Trott, A. R., & Welch, T. C. (2008). Refrigeration and Air-conditioning. Butterworth-Heinemann., p246

Knudsen, M. (1950). The kinetic theory of gases: some modern aspects.

Kotz, J. C., Treichel, P. M., & Townsend, J. (2012). Chemistry and chemical reactivity. Cengage Learning., p247、p625

Masters, K. (1985). Spray drying handbook. Spray drying handbook.

Mezhericher, M., Levy, A., & Borde, I. (2007). Theoretical drying model of single droplets containing insoluble or dissolved solids. Drying Technology, 25(6), 1025-1032.

Mezhericher, M., Levy, A., & Borde, I. (2008). Heat and mass transfer of single droplet/wet particle drying. Chemical Engineering Science, 63(1), 12-23.

Nešić, S., & Vodnik, J. (1991). Kinetics of droplet evaporation. Chemical Engineering Science, 46(2), 527-537.

Rattner, A. S., & Garimella, S. (2014). Simple mechanistically consistent formulation for volume-of-fluid based computations of condensing flows. Journal of Heat Transfer, 136(7), 071501.

Sadafi, M. H., Jahn, I., Stilgoe, A. B., & Hooman, K. (2014). Theoretical and experimental studies on a solid containing water droplet. International Journal of Heat and Mass Transfer, 78, 25-33.

Schrage, R. W. (1953). A theoretical study of interphase mass transfer. Columbia University Press.

Sauter, J. (1926). Die Grössenbestimmung der im Gemischnebel von Verbrennungskraftmaschinen vohrhandenen Brennstoffteilchen:(Mitteilung aus dem Laboratorium für Technische Physik der Technischen Hochschule München). VDI-Verlag.

蔡業彬, 曾亞森, 胡智華, 李瑞芳. (2006). 噴霧乾燥技術研究現狀及其在中藥製藥中的應用. 化工装备技术, 27(2), 5-10.

劉廣文. (2001). 噴霧乾燥實用技術大全. 中國輕工業出版社.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2017-11-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明