以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:82 、訪客IP:3.142.255.23
姓名 林柏璁(Bor-Tsong Lin) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 電化學技術應用於無筋混凝土時電流分佈 與離子傳輸現象鹼質與之初步研究
(AbstractKeyword: electrochemical technique, auxiliary electrode, electricThe experiment applied the electrochemical technique toinvestigate the distribution of electric currents that in the harden nonreinforcingconcretecurrent density. )相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究係應用電化學技術,研究通電電流在發生鹼質與粒料反應之
硬固無筋混凝土內的分佈行為。本研究主要設計參數為輔助陰陽極之間
距、數量、與排列方式。其目的是為了瞭解輔助陰陽極在無筋混凝土內
之不同間距、數量、與排列方式對通電電流所產生的影響。
研究成果顯示,混凝土試體進行電化學通電時,電極平行配置之混
凝土試體,其電流強度最強的區域發生在陰陽電極間之直線區域上。而
混凝土內離子的析出效果,主要與陰陽輔助電極之表面積與通電電流密
度成一正比關係。摘要(英) The experiment applied the electrochemical technique to
investigate the distribution of electric currents that in the harden nonreinforcing
concrete arose from the alkali- aggregate reaction. The
major design parameter are the distance, amount and permutation of
the auxiliary electrodes. The purpose of the electrode parameters
design was to analyze the influence on the concrete.The results show that when applying electrochemical technique for
our experiment, the specimen which disposed for parallel-electrodes
existed a strong electric intensity on the beeline-area of the anode
and cathode. And the result of the ions separate from the specimen
was depended on the surface area of the electrodes and electric current density.關鍵字(中) ★ 輔助電極
★ 電化學技術
★ 電流分佈關鍵字(英) ★ auxiliary electrode
★ electric current distribution
★ electrochemical technique論文目次 目錄……................................................................................................I
圖目錄…............................................................................................ VII
表目錄….............................................................................................. X
第一章緒論........................................................................................1
1-1 研究動機......................................................................................1
1-2 研究目的......................................................................................3
第二章文獻回顧.................................................................................4
2-1 鹼質與粒料反應之機理................................................................4
2-1-1 鹼質與粒料反應形成的條件與過程.......................................4
2-1-2 鹼質與粒料反應之種類.........................................................6
2-1-2-1 鹼-氧化矽反應(Alkali-Silica Reaction).....................6
2-1-2-2 鹼-碳酸鹽反應(Alkali-Carbonate Reaction) ............6
2-1-2-3 鹼-矽酸鹽反應(Alkali-Silicate Reaction)..................7
2-2 影響鹼質與粒料反應的因素.........................................................8
2-2-1 含鹼量與水泥細度.................................................................8
2-2-2 活性粒料的粒徑與含量.......................................................10
2-2-2-1 活性粒料的粒徑...........................................................10
2-2-2-2 活性粒料的含量........................................................... 11
2-2-3 水及水灰比.........................................................................12
2-2-4 摻料的選擇.........................................................................13
2-2-5 pH 值..................................................................................13
2-2-6 混凝土所處的環境...............................................................14
2-3 鹼質與粒料反應的預防與維修方法............................................15
2-3-1 新拌混凝土發生鹼質與粒料反應的預防方法.......................16
2-3-1-1 粒料的選擇...................................................................16
2-3-1-2 控制混凝土中的含鹼量.................................................17
2-3-1-3 使用卜作嵐材料...........................................................17
2-3-1-4 使用化學摻料...............................................................18
2-3-2 硬固混凝土發生鹼質與粒料反應的維修方式.......................19
2-3-2-1 防止水分侵入...............................................................19
2-3-2-2 改變混凝土膠體性質....................................................19
2-3-2-3 束制或補強...................................................................20
2-3-2-4 置換.............................................................................20
2-3-2-5 電化學技術...................................................................21
2-4 電化學去鹽技術.........................................................................22
2-4-1 去鹽機理.............................................................................22
2-4-2 影響電化學去鹽成效之因素................................................23
2-5 電化學電導通路組成因子及其影響............................................27
2-5-1 離子半徑與電荷密度...........................................................27
2-5-2 電解質溶液與其電導率.......................................................29
2-5-3 電位與電位梯度..................................................................32
2-5-3-1 電位.............................................................................32
2-5-3-2 等位面和電位梯度........................................................32
2-5-4 電流與等電流線..................................................................33
2-5-4-1 電流.............................................................................33
第三章試驗計劃.................................................................................37
3-1 實驗設計....................................................................................37
3-2 試驗材料....................................................................................43
3-2-1 水泥....................................................................................43
3-2-2 活性粒料.............................................................................44
3-2-3 拌合水................................................................................44
3-2-4 氫氧化鈉(NaOH)............................................................44
3-2-5 氫氧化鋰(LiOH.H2O) ...................................................44
3-2-6 氫氧化鈣(Ca(OH)2) ........................................................45
3-2-7 輔助電極.............................................................................45
3-2-8 沉水循環幫浦......................................................................45
3-2-9 聚氯乙烯硬管(PVC Pipe) ...............................................46
3-3 主要儀器設備............................................................................47
3-3-1 混凝土拌合機......................................................................47
3-3-2 電源供應器(Power Supply)............................................47
3-3-3 混凝土抗壓試驗機...............................................................48
3-3-4 離子層析儀(Ion Choromatogrphy,IC) ..........................48
3-4 實驗步驟與方法.........................................................................50
3-4-1 初步試驗條件配置...............................................................50
3-4-2 電流分佈試驗......................................................................52
3-4-2-1 電流量測......................................................................52
3-4-2-2 電位量測......................................................................53
3-4-3 電化學通電試驗..................................................................55
3-4-3-1 參數設計及條件配置....................................................55
3-4-3-2 表含鹼當量的調配與計算.............................................57
3-4-3-3 無筋混凝土試體模具製作與灌製..................................58
3-4-3-4 通電電流密度...............................................................59
3-4-4 陰陽極電解槽離子分析.......................................................60
3-5 分析方法....................................................................................61
3-5-1 單軸抗壓強度......................................................................61
3-5-2 離子濃度分析......................................................................61
第四章結果與討論.............................................................................63
4-1 實驗粒料之活性檢測..................................................................63
4-2 不同水灰比、含鹼量、粒料活性對混凝土角柱膨脹量之影響.....65
4-2-1 在模擬ASTM C1293 養護環境下,混凝土角柱之膨脹量.......66
4-2-1-1 不同水灰比與粒料活性對混凝土角柱膨脹量之影響(模擬
C1293)...................................................................................66
4-2-1-2 不同含鹼量與粒料活性對混凝土角柱膨脹量之影響(模擬
C1293)...................................................................................67
4-2-1-3 不同含鹼量與水灰比對混凝土角柱膨脹量之影響(模擬
C1293)...................................................................................68
4-2-2 在模擬ASTM C1260 之加速養護環境下,混凝土角柱之膨脹
量.................................................................................................69
4-2-2-1 不同水灰比與粒料活性對混凝土角柱膨脹量之影響(模擬
C1260)...................................................................................70
4-2-2-2 不同含鹼量與粒料活性對混凝土角柱膨脹量之影響(模擬
C1260)...................................................................................71
4-2-2-3 不同含鹼量與水灰比對混凝土角柱膨脹量之影響(模擬
C1260)...................................................................................72
4-2-3 主試驗控制組之配比決定....................................................73
4-3 電化學通電過程中系統產生之過電壓.........................................76
4-3-1 電流強度與溫度一定時,電極間距的變化...........................78
4-3-2 電極距離與溫度一定時,電流的變化..................................80
4-4 電化學通電過程中,試體內之電流分佈關係..............................81
4-4-1 單對電極之電流電壓分佈圖................................................82
4-4-1-1 電極數量1:1 之等電位圖...........................................82
4-4-1-2 電極數量1:1 之等電流圖...........................................85
4-4-2 雙對電極平行配置之電流電壓分佈圖..................................87
4-4-2-1 電極數量2:2 平行配置之等電位圖............................87
4-4-2-2 電極數量2:2 平行配置之等電流圖............................90
4-4-3 雙對電極相間配置之電流電壓分佈圖..................................92
4-4-3-1 電極數量2:2 相間配置之等電位圖............................92
4-4-3-2 電極數量2:2 相間配置之等電流圖............................94
4-5 通電過程中,陰陽極電解槽內之離子濃度分析..........................97
4-5-1 鋰離子的移動關係...............................................................98
4-5-1-1 電極數量1:1,不同間距的變化對鋰離子移動之影響關係
.................................................................................................98
4-5-1-2 電極數量2:2,不同間距的變化對鋰離子移動之影響關係
...............................................................................................100
4-5-1-3 電極間距10 公分,不同電極數量變化對鋰離子移動之影
響關係....................................................................................100
4-5-2 鈉離子的析出....................................................................102
4-5-2-1 電極數量1:1,不同間距的變化對鈉離子析出之影響關係
...............................................................................................102
4-5-2-2 電極數量2:2,不同間距的變化對鈉離子析出之影響關係
...............................................................................................103
4-5-2-3 電極間距10 公分,不同電極數量變化對鈉離子析出之影
響關係....................................................................................104
4-5-3 鈣離子的析出....................................................................105
第五章結論與建議...........................................................................107
5-1 結論.........................................................................................107
5-2 建議.........................................................................................109
參考文獻........................................................................................... 110參考文獻 1. Stanton, T. E., “Expansion of Concrete Through Reaction Between Cement
and Aggregate”, Proc. ASCE Vol.66, 1940.
2. George, J. Z., “Effectiveness of Mineral Admixture in Reducing ASR
3. Hobbs, D.W., “Alkali-Silica Reaction in Concrete”, Thoma Telford,
4. Qinghan B., “Preliminary Study of Effect of LiNO2 on Expansion of Mortars
Subjected to Alkali-Silica Reaction”, Cement and Concrete Research, Vol. 25,
5. Qinghan B., “Various Chemicals in Suppressing Expansion due to Alkali-Silica
Reaction”, 10th ICAAR, London, 1996.
6. 李釗,「由破裂之消波塊探討鹼骨材反應」,港灣報導,pp.30-40,1996。
7. 巫柏蕙,「港灣混凝土構造物鹼質與粒料反應抑制策略之研究」,國立中央大學土
木工程研究所,碩士論文,中壢,2001年。
8. Lee, C., “Available Alkalis in Fly and Their Effects on Alkali-Aggregate
Reaction”, PHD Dissertation, Iowa State University.
9. Diamond, “On the Phyical amd Chemistry of Alkali-silica Reaction”, 5th ICAAR,
10. Koboyashi, K., Shiraki, R. and Kawai, K., “Influence of Alkali Concentration
Distribution Occurring in Concrete Members on Expansion and Cracking due
to ASR”, Proceedings of the 8th International Conference on Alkali-Aggregate
Reaction, Kyoto, pp.641-646, 1989.
111
11. Mindess S., Young J. F., Concrete. Prentics-Hall. Inc., Englewood Cliffs, New
Jersey, U.S.A, 1981.
12. Gillott., Duncan and Swenson, “Alkali Aggregate Reaction in Nova Scotia IV,
Character of the Reaction”, C.C.R., Vol.3, No.5, pp.521-535.
13. ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of
Cement-Aggregate Combinations (Mortar-Bar Method)”, Annual Book of
ASTM Standards, Section 4, Vol.04.02, 1999.
14. ASTM C289-94, “Standard Test Method for Potential Alkali-Silica Reactivity of
Aggregates(Chemical Method)” , Annual Book of ASTM Standards, Section 4,
Vol.04.02, 1999.
15. 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,國立中央大學土木工程研
究所,博士論文,中壢,1999年。
16. SHRP-C-342, “Alkali Silica Reactivity: An Overview of Research”, Strategic
Highway Research Program, 1993.
17. Bian, Q., Xuequan, W. and Tang, M.S., “Effect of Reactive Aggregate Powder
on Suppressing Expansion Due to Alkali-Silica Reaction”, Proceedings of the
10th International Conference on Alkali-Aggregate Reaction in Concrete, 1996.
18. 西林新藏.“成功大學演講記錄”1992.11, 1993.03.
19. Oberholster, R. E., Westra, W. B., “The Effectiveness of Mineral Admixtures in
Reducing Expansion due to AAR and Malmesbury Group Aggregate”,
Proceedings of the 5th International Conference on AAR in Concrete, Paper
S252/31, Cape Town, 1981.
20. Hewlett, P. C., “Concrete Admixture Use and Application”, Longman Scientific
and Technical, pp.28-55, 85-101, 1988.
21. Qinghan, B., Nishibayashi, S. and Kuroda, T., “Various Chemicals in
112
Suppressing Expansion Due to Alkali-Silica Reaction,” Proceedings of the 10th
International Conference on Alkali-Aggregate Reaction in Concrete, 1996.
22. Jensen, A.D., et al., “Studies of Alkali-Silica Reaction Part 2 Effect of
Air-Entrainment on Expansion“, C.C.R., Vol.14 No.3, pp.311-314,1984.
23. Okada, K., Tezuka, M., Yoshikawa, T., Himeno, M. and Komada, M., “Alkali
Aggregate Reaction and Investigation on its Causes and Strength Evaluations
of Materials Subject to its Effects”, Proceedings of the 8th International
Conference on Alkali- Aggregate Reaction, Kyoto, pp.609-615, 1989.
24. Stokes, D. B., “Use of Lithium to Combat Alkali Silica Reaction”, Proceedings
of the 10th International Conference on Alkali-Aggregate Reaction in Concrete,
1996.
25. Tomasawa, F. et al., “Influence of Water Concrete of Concrete on AAR”,
Proceeding of the 8th International Conference on AAR, Kyoto, pp.881-885,
1989.
26. 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工
程研究所,碩士論文,中壢,1999年。
27. Tritthart J., “Electrochemical Removal of Chloride from Hardened Cement
Paste”, Cement and Concrete Research, Vol. 23, pp. 1095-1104, 1993.
28. 簡坤葦,「利用電化學方法去除混凝土中氯離子成效之研究」,國立中央大學土木
工程研究所碩士論文,中壢,1998年。
29. M. Prezzi, P.J.M. Monteiro, G. Sposito, Alkali – silica reaction: Part 1. Use of
the double-layer theory to explain the behavior of the reactionproduct gels, ACI
Mater. J. 94 (1997) 10–17.
30. Flávio A. Rodrigues, Paulo J.M. Monterio, “The alkali-silica reaction The effect
of monovalent and bivalent cations on the surgace charge of opal” Cement
113
and Concrete Research, Vol. 31, pp. 1549-1552, 2001.
31. 黃子卿著,「電解質溶液理論導論」,修訂版,科學出版社,北京,1983年。
32. 格拉斯通著,賈立德等譯,「電化學概論」,科學出版社,北京,1958年。
33. 賈起民著,「電磁學」,凡異文化事業有限公司,台北。
34. 田福助,「電化學-理論與應用」,高立圖書,台北,1987年。
35. 田中正三郎著,賴耿陽譯著,「電化學實驗」,復漢出版社,台北,1982年。
36. 蔡經善、朱耕著,「古典動力學」,亞東書局,台北,1987年。
37. Nzeribe M. Ihekwaba, Brian B. Hope, “Mechanical Properties of Anodic and
Cathodic Regions of ECE Treated Concrete.“ Cement and Concrete
Research, Vol. 26, No 5, pp. 771-780, 1996.
38. 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工
程研究所,碩士論文,中壢,2002年。指導教授 李釗(Chau Lee) 審核日期 2002-7-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare