博碩士論文 90225012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.145.106.7
姓名 吳肇騰(Chao-Teng Wu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 經驗貝氏方法在重複基因微陣列晶片之應用
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去為研究基因之功能以及相互影響的模式,所應用的方法往往需要大量時間與金錢,卻常無法得到有效的實驗結果,而近年來由於生物晶片 (biochips) 製作技術的成熟,可同時對大量資料作實驗,因而使其應用範圍越加廣泛。
本文根據Shieh和Fan (2003) 建立一伽碼-常態-伽碼之三成份混合模型分析單一晶片之基因表現資料,並推廣至重複實驗晶片以經驗貝氏方法分析基因表現資料,希望能在多片資料具共同模型與獨立模型中取其折衷,結果顯示經驗貝氏方法確實具此效果,並依其參數估計結果以貝氏預測勝算用之於差異表現基因的鑑別上。最後,將結果運用於一組真實的重複實驗基因微陣列資料中。
關鍵字(中) ★ 經驗貝氏方法
★ 基因微陣列
關鍵字(英)
論文目次 第一章 緒論 ……………………………………………… 1
1.1 研究動機與目的 …………………………………… 1
1.2 文獻回顧 …………………………………………… 4
1.2 研究方法 …………………………………………… 8
第二章 單片資料之混合模型 …………………………… 11
2.1 均等-常態-均等模型 ……………………………… 11
2.2 伽瑪-常態-伽瑪模型 ……………………………… 14
2.3 單晶片模型之參數估計 ……………………………… 15
2.3.1 最大概似估計 ……………………………… 15
2.3.2 貝氏估計 …………………………………… 17
2.4 異常表現基因之選取 ………………………………… 20
第三章 重複實驗資料之混合模型 ……………………… 23
3.1 重複資料之伽瑪-常態-伽瑪模型 …………………… 23
3.1.1 高維度模型之參數估計 ……………………… 24
3.1.2 低維度模型之參數估計 ……………………… 26
3.2 經驗貝氏模型 ……………………………………… 26
3.2.1 貝氏估計 ……………………………………… 27
3.2.2 經驗貝氏估計 ………………………………… 29
3.3 異常表現基因之選取 ……………………………… 32
第四章 模擬研究與實例分析 …………………………… 35
4.1 均方誤差 …………………………………………… 35
4.1.1 高維度模型之資料 …………………………… 35
4.1.2 低維度模型之資料 …………………………… 37
4.2 貝氏風險 …………………………………………… 39
4.2.1 高維度模型之資料 …………………………… 39
4.2.2 低維度模型之資料 …………………………… 40
4.3 差異表現基因之鑑別 ……………………………… 42
4.3.1 高維度模型之資料 …………………………… 42
4.3.2 低維度模型之資料 …………………………… 46
4.4 實例分析 …………………………………………… 49
4.4.1 參數估計 ……………………………………… 49
4.4.2 臨界值的決定 ………………………………… 51
4.3 差異表現基因之鑑別 …………………………… 52
第五章 結論 ……………………………………………… 88
參考文獻 …………………………………………………… 90
附錄 ………………………………………………………… 96
參考文獻 中文部分:
[1] 基因微陣列之簡介及其應用:國科會微陣列基因體醫學核心實驗室;網址:http://microarray.mc.ntu.edu.tw/
[2] 交大生物科技諮詢網;網址:http://biotech.life.nctu.edu.tw/
英文部分:
[1] Berger, J.O. (1984). The robust Bayesian viewpoint (with discussion). In Robustness in Bayesian Statistics, ed. J. Kadane, Amsterdam: North Holland.
[2] Berger, J.O. (1985). Statistical decision theory and Bayesian analysis. New York: Springer-Verlag.
[3] Berger, J.O. (1986). Robust Bayes and empirical Bayes analysis with -contaminated priors. Annals of Statistics, 14, 461-486.
[4] Carlin, B.P. and Louis, T.A. (2000). Bayes and empirical Bayes methods for data analysis. New York: Chapman and Hall,
[5] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83-87.
[6] Chen, Y., Dougherty, E.R., and Bittner, M.L. (1997). Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal of Biomedical Optics, 4, 364–374.
[7] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.
[8] Dennis, B. and Patil, G.P. (1984). The gamma distribution and weighted multimodal gamma distribution as models of population abundance. Mathematical Biosciences, 68, 187-212.
[9] Dudoit, S., Yang, Y.H., Callow, M.J. and Speed, T.P. (2000). Statistical methods for identifing differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12, 111-139.
[10] Efron, B., Tibshirani, R., Goss, V., and Chu, G. (2001). Microarrays and their use in a comparative experiment. Journal of the American Statistical Association, 96, 1151-1160.
[11] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95, 14863–14868.
[12] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721-741.
[13] Gilks, W.R., Richardson, S., and Spiegelhalter, D.J., Eds. (1996). Markov Chain Monte Carlo in practice. London:Chapman and Hall.
[14] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286, 531–537.
[15] Greenwood, J.A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55-65.
[16] Hastie, T., Tibshirani, R., Eisen, M., Brown, P., Ross, D., Scherf, U., Weinstein, J., Alizadeh, A., Staudt, L., and Botstein, D. (2001). Gene shaving: A new class of clustering methods for expression arrays. Genome Biology, 2(1), research0003.1-0003.12.
[17] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
[18] Ibrahim, J.G., Chen, M.H. and Gary, R.J. (2002) Bayesian models for genes expression with DNA microarray data. Journal of the American Statistical Association, 457, 88-99.
[19] Kendziorski, C.M., Newton, M.A., Lan, H. and Gould, M.N. (2003) On parametric empirical Bayes methods for the comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 22, 3899-3914.
[20] Kerr, M.K., Afshari, C.A., Bennett, L., Bushel, P., Martinez, J., Walker, N.J. and Churchill G.A. (2002) Statistical analysis of a gene expression microarray experiment with replication. Statistica Sinica, 12, 203-217.
[21] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953). Educations of stat calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1091.
[22] Morris, C.N., (1983a). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78, 47-65.
[23] Morris, C.N., (1983b). Natural exponential families with quadratic variance functions: Statistical theory. Annals of Statistics, 11, 515-529
[24] Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R. and Tsui, K.W. (2001). On differrential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology, 8, 37-52.
[25] Robbins, H. (1955). An empirical Bayes approach to statistics. In Proceedings of 3rd Berkeley Symp. Mathematical Statistics And Probability, 1, Berkeley, CA: Univ. of California Press, 157-164.
[26] Sabatti, C. (2001). Inference on gene expression changes as measured with DNA microarrays.
網址:http://www.stat.ucla.edu:16080/~sabatti/statarray/change.pdf
[27] Sapir, M. and Churchill, G.A. (2000). Estimating the posterior probability of differential gene expression from microarray data. Poster, The Jackson Laboratory.
網址:http://www.jax.org/research/churchill/
[28] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.
[29] Shieh and Fan (2003). Analyzing single-slide microarray gene expression data by a Bayesian approach. Manuscript.
[30] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.B., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–3297.
[31] Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., and Dmitrovsky, E. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96, 2907–2912.
[32] Tanner, M.A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions likelihood functions. Third Edition. Springer, New York.
[33] Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., and Brown, P. (2000). Clustering methods for the analysis of DNA microarray data. Stanford University.
指導教授 樊采虹(Tsai-Hung Fan) 審核日期 2004-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明