博碩士論文 952202009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:52.15.158.238
姓名 林佳翰(Chia-han Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 二維光子晶體共振腔之共振模態調變研究
(Cavity modes modification research of two-dimensional photonic crystal cavities)
相關論文
★ 應力緩衝自聚性砷化銦量子點之電場調制反射光譜★ 垂直耦合自聚性砷化銦鎵量子點之光學特性研究
★ 氮化銦鎵/氮化鎵多層量子井之光學特性研究★ 自聚性砷化銦鎵量子點之光電特性
★ 熱退火處理之量子點的能階變化及其理論計算★ 碲硒化鋅磊晶層之光學特性研究
★ 硒化鋅磊晶層之光學性質★ 氮化銦鎵卅氮化鎵多層量子井發光二極體之電性研究
★ 低溫成長氮化鎵的光電性質★ 自聚性矽鍺多層量子點光學特性研究
★ III--氮族半導體的極化電場效應★ 應力緩衝層對砷化銦量子點侷限能階之影響
★ 砷化銦量子點在二維光子晶體中共振模態之光學特性研究★ 高銦含量氮化銦鎵薄膜之光學性質研究
★ 氮化銦奈米柱之光學性質研究★ 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光子晶體是一種介電質週期性排列的人為設計元件,可經由不同的設計成為波導或是共振腔。其中二維光子晶體共振腔在近十年來有重大的突破與發展,從最簡單的H1 共振腔到Q 值被證實高達45000 的L3 共振腔都引起許多研究者的高度興趣。本論文即著手研究H1 與L3 共振腔的共振模態,藉由共振腔的調變瞭解兩者之間有何關連性存在。由理論分析與量測實驗的對應比較,掌握了各個模態的行為特性,也對Q 值的變化有了更深入的瞭解。
摘要(英) Photonic crystal is an artificial device which arranges its dielectric material periodically. We can fabricate it as a wave guide or cavity via different design ideas. Two- dimension photonic crystals had significant development in recently decade. Numerous researchers were interested in H1 cavities and L3 cavities which were demonstrated possessing high quality factor as 45000. My thesis investigates resonance modes of H1 cavities and L3 cavities. Via adjusting the geometry structures of these cavities, we can understand the correlation of cavity modes between H1 and L3 cavities. Comparing theory analysis and measurement experiment, we can know well about behaviors of these cavity modes. Furthermore, we realize the variation of quality factor more deeply.
關鍵字(中) ★ 光子晶體
★ 共振腔
★ 調變
關鍵字(英) ★ Photonic Crystals
★ Cavity
★ modification
論文目次 中文摘要…………………………………………………………………… Ⅰ
英文摘要…………………………………………………………………… Ⅱ
致謝………………………………………………………………………… Ⅲ
目錄………………………………………………………………………… Ⅴ
圖目錄……………………………………………………………………… Ⅶ
表目錄……………………………………………………………………… Ⅹ
第一章 光子晶體
1-1 光子晶體的起源……………………………………………… 1
1-2 光子晶體能帶理論…………………………………………… 1
1-3 二維光子晶體………………………………………………… 7
1-4 缺陷在二維光子晶體中的特性……………………………… 11
第二章 二維光子晶體共振腔
2-1 共振腔與自發輻射…………………………………………… 14
2-2 二維光子晶體共振腔介紹…………………………………… 19
2-3 光子晶體共振腔的設計……………………………………… 22
第三章 理論與實驗方法
3-1 光子晶體的數值模擬方法…………………………………… 26
3-1.1 平面波展開法(PWM)……………………………………… 27
3-1.2 有限時域差分法(FDTD)…………………………………… 31
3-2 微螢光量測的實驗方法……………………………………… 33
3-3 試片製作與共振腔設計……………………………………… 38
第四章 共振模態之調變
4-1 H1 與L3 共振模態之模擬結果……………………………… 42
4-2 H1 與L3 共振模態之實驗鑑定……………………………… 49
4-3 共振模態之調變……………………………………………… 57
4-4 縮洞調變與模態演進………………………………………… 60
4-5 移洞調變與特殊模態轉移…………………………………… 69
4-5.1 模態轉移的波長反轉現象………………………………… 69
4-5.2 共振腔品質因子的變化…………………………………… 73
4-5.3 移洞調變之實驗驗證……………………………………… 79
第五章 結論……………………………………………………… 89
參考文獻…………………………………………………………… 90
參考文獻 [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics
and Electronics”, Phys. Rev. Lett., 58, 2059 (1987).
[2] Sajeev John, “Strong localization of photons in certain disordered dielectric
superlattices”, Phys. Rev. Lett., 58, 2486 (1987).
[3] L. P. Biró, ”Role of photonic-crystal-type structures in the thermal regulation
of a lycaenid butterfly sister species pair”, Phys. Rev. E 67, 021907-1(2003).
[4] John D. Joannopoulos, “Photonic Crystal (Molding The Flow Of Light)”
second edition, Princeton University Press, (2008)
[5] S.O. Kasap, “Optoelectronics and Photonics Principle and Practices”,
Pearson Education Press, (2001)
[6] E. M. Purcell, “Spontaneous emission probabilities at radio Frequencies”,
Phys. Rev. 69, 681 (1946).
[7] D. Kleppner, “Inhibited spontaneous emission”, Phys. Rev. Lett. 47,
233–236 (1981).
[8] Qi, M. et al. , “A three-dimensional optical photonic crystal with designed
point defects”, Nature 429,538–542 (2004).
[9] Blanco, A. et al. , “Large-scale synthesis of a silicon photonic crystal with a
complete threedimensionalbandgap near 1.5 micrometres” ,Nature 405,
437–440 (2000).
[10] Noda, S. , “Full three-dimensional photonic bandgap crystals at
near-infrared wavelengths” , Science 289, 606–606 (2000).
[11] Wijnhoven, J. E. G. J. & Vos, W. L. , “Preparation of photonic crystals
made of air spheres in titania “, Science 281, 802–804 (1998).
[12] Gourley, “Optical properties of two-dimensional photonic lattices
fabricated as honeycomb nanostructures in compound semiconductors”,
Appl. Phys. Lett. 64, 687–689 (1994).
[13] Fan, S. H. , ” High extraction efficiency of spontaneous emission from
slabs of photonic crystals” , Phys. Rev. Lett. 78,3294–3297 (1997).
[14] 盧贊文、李柏璁 , “光通訊波長二維光子晶體雷射發展簡介” ,
物理雙月刊(廿七卷五期)2005 年10 月
[15] Loncar, M. , “Low-threshold photonic crystal laser”, Appl. Phys. Lett.
81, 2680–2682 (2002).
[16] Akahane, Y., Asano, T., Song, B. S. & Noda, S. , “Investigation of high-Q
channel drop filters using donor-type defects in two-dimensional photonic
crystal slabs” , Appl. Phys. Lett. 83,1512–1514 (2003).
[17] Painter, O. et al. , “Two-dimensional photonic band-gap defect mode
Laser”, Science 284, 1819–1821 (1999).
[18] Painter, O. et al. , “Polarization properties of dipolelike defect modes in
photonic crystal nanocavities”, Optics Letters Vol.27 No.5 (2002)
[19] Masayuki Shirane et al. , ” Mode identification of high-quality-factor
single-defect nanocavities in quantum dot-embedded photonic crystals”,
Jour. Appl. Phys. 101, 073107 (2007)
[20] Masahiro Nomura et al. , “Room temperature continuous-wave lasing
in photonic crystal nanocavity”, Optics Express Vol.14 No.13 (2006)
[21] Yoshihiro Akahane et al. , “High-Q photonic nanocavity in a
two-dimensional photonic crystal”, Nature 425 , 944 (2003)
[22] S. Strauf et al. , “Self-Tuned Quantum Dot Gain in Photonic Crystal
Lasers”, Phys. Rev. Lett. 96 , 127404 (2006)
[23] 張高德 ; “廣義光子晶體元件之研究與分析”; 國立中央大學,光
電科學研究所,博士論文 (2007年6月)
[24] M. Plihal and A. A. Maradudin, “Photonic band structure of two
dimensional systems: the triangular lattice”, Phys. Rev. B 44, 8565–8571
(1991)
[25] L. A. Coldren and S. W. Corzine , “Diode Lasers and Photonic Integrated
Circuits”, (Wiley, New York, 1995).
[26] 欒丕綱、陳啟昌, ”光子晶體-從蝴蝶翅膀到奈米光子學”, 五南圖
書出版股份有限公司 (2005年8月)
[27] Min Qiu , “A nonorthogonal finite-difference time-domain method for
computing the band structure of a two-dimensional photonic crystal
with dielectric and metallic inclusions” , J. Appl. Phys. 87, 8268 (2000);
[28] K. S. Yee, IEEE Trans. Antennas Propagat, 14, 302 (1966)
[29] 曾彥鈞, “高品質因子與低模態體積光子晶體微共振腔之設計與
製作”, 國立中央大學,光電科學研究所,碩士論文 (2007年6月)
指導教授 徐子民(Tzu-Min, Hsu) 審核日期 2008-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明