參考文獻 |
Abramovitz, M. and N. Stegun. (1970). Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables.
Asmussen, S. and Rubinstein, R. Y. (1995). Complexity properties of
steady-state rare events simulation in queueing models. Advances in
Queueing: Theory, Methods and Open Problems, CRC Press, 429-462.
Bucklew, J. A. (2004). Introduction to Rare Event Simulation. Springer-
Verlag: New York.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedas-
ticity. Journal of Econometrics, 31, 307-327.
Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling
in nance: a selective review of the theory and empirical evidence.
Econometrics, 52, 5-59.
Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis Forecasting
and Control. Holden-Day: San Francisco.
Burmeister, E., and Wall, K. D. (1982). Kalman ltering estimation of
unobserved rational expections with an application to the German
hyperin ation. Journal of Econometrics, 4,147-160.
Chang, Y. P., Hung, M. C. and Wu, Y. F. (2003). Nonparametric estima-
tion for risk in Value-at-Risk estimator. Communications In Statistics:
Simulation and Computation, 32, 1041-1064.
Duffie, D. and Pan, J. (1997). An Overview of Value at Risk. Journal of
Derivative, 7, 7-49.
Dunsmuir, W. (1979). A central limit theorem for parameter estimation
in stationary time series and its applications to models for a signal
observed white noise. Annals of Statistics, 7, 490-506.
Efron, B. (1979). Bootstrap methods: Another look at the jackknife.
Annals of Statistics, 7,23-55.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom in ation. Econometrica,
50, 987-1008.
Fuh, C. D. (2004). E cient likelihood estimation in state space models.
Technical Report, No. C-4. Institute of Statistical Science, Academia Sinica.
Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance
reduction techniques for estimating Value-at-Risk. Management Science,46,1349- 1364.
Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio
Value-at-Risk with heavy tailed risk factors. Mathematical Finance,
12, 239-270.
Glynn, P. W. and Iglehart, D. L. (1989). Importance sampling for stochastic
simulations. Management Science, 35, 1367-1391.
Hall, P. and Yao Q. (2003). Inference in ARCH and GARCH models with
heavy-tailed errors. Econometrica, 71, 285-317.
Harvey, A. C. (1989). Forecasting, Structural Models and The Kalman
Filter. Cambridge University Press, Cambridge.
Harvey, A. C., Ruiz, E., and Shephard. N. G. (1992). Multivariate
stochastic variance models. Review of Economic Studies, 61, 247-264.
Hendricks, D. (1996). Evaluation of Value-at-Risk models using historical
data. Federal Reserve Bank of New York Economic Policy Review, April, 39-69.
Hull, J. and White, A. (1998). Incorporating volatility updating into the
historical simulation method for Value-at-Risk. Journal of Risk, 1, 5-19.
Jacquier, E., Polson, N. G., and Rossi, P. E. (1994). Bayesian analysis
of stochastic volatility models. Journal of Business and Economic
Statistics, 12, 371-389.
Jorion, P. (2002). Value at Risk: The New Benchmark for Managing
Financial Risk. McGraw-Hill: New York.
Ljung, L., and Caines, P. E. (1979). Asymptotic normality of prediction
error estimators for approximate system models. Stochastics, 3, 29-46.
Miguel, J. A. and Olave P. (1999a). Bootstrapping forecast intervals in
ARCH models. Test, 8, 345-364.
Migue, J. A. and Olave, P. (1999b). Forecast intervals in ARCH models:
bootstrap versus parametric methods. Applied Economics Letters, 6,
323-327.
Morgan, J. P. (1996). RiskMetrics Technical Document, Forth edition,
New York.
Ridder, T. (1997). Basic of statistical VaR-estimation. In: Bol, D.,
Nakhaeizadeh, G., Vollmer, K. H., eds. Risk Measurement, Econo-
metrics and Neural Networks.Heidelberg: Physica-Verlag. 161-187.
Ross, S. M. (2002). Simulation. Academic Press: San Diego.
Ruiz, E. (1994). Quasi-maximum likelihood estimation of stochastic volatility
models. Journal of Econometrics, 63, 289-306.
Sen, P. K. and Singer, J. M. (1993). Large Sample Methods in Statistics:
An Introduction with Applications. Chapman & Hall: New York.
Shephard N. (1993). Fitting nonlinear time-series models with applications to
stochastic variance models. Journal of Applied Econometrics, 8, 135-152.
So, M. K. P., Li, W. K., and Lam, K. (1997). Multivariate modelling of
the autoregressive random variance process. Journal of Time Series
Analysis, 18, 429-446.
Stoffer, D. S. and Wall, K. D. (1991). Bootstrapping state-space models:
Gaussian maximum likelihood estimation and the Kalman lter.
Journal of the American Statistical Association, 86, 1024-1033.
Taylor, S. J. (1982). Financial returns modelled by the product of two
stochastic process, a study of daily sugar price 1961-79. In Time Series
Analysis: Theory and Practice 1 (ed. O. D. Anderson). Amsterdam:
North-Holland. 203-226.
Taylor, S. J. (1994). Modelling stochastic volatility. Mathematical Finance,
4, 183-204.
Thombs, L. A. and Schucany, W. R. (1990). Bootstrap prediction intervals
for autoregression. Journal of the American Statistical Association, 85,
486-492.
Tsay, R. S. (2002). Analysis of Financial Time Series. John Wiley.
Wall, K. D., and Sto er, D. S. (2002). A state space model to bootstrap-
ping conditional forecasts in ARMA models. Journal of Time Series
Analysis, 23, 733-751.
Wong, C. M. and So, M. K. P. (2003). On conditional moments of GARCH
models, with applications to multiple period value at risk estimation.
Statistica Sinica, 13, 1015-1044. |