博碩士論文 952202016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.142.210.157
姓名 王朝建(Chau-jian Wang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 在氧化鋁上成長金與白金的和金奈米粒子
(Alloying of Au-Pt nanoclusters on thin film Al2O3/NiAl(100))
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究
★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應
★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象★ 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用同步輻射光源的光激發電子能譜儀(PES)來研究甲醇在良好奈
米白金觸媒模型上的吸附及分解反應,以及金與白金合金的生成與其對吸
附甲醇後的反應。
利用氣相沈積法,我們在超高真空中(小於3 x 10-10)於300 K 溫度下,
將白金奈米團簇成長在完整有序的氧化鋁薄膜Al2O3/NiAl(100)。在PES 中
我們發現白金的電性結構並不隨著白金的覆蓋量而影響,而在經過450K
的退火溫度後白金粒子有氧化的現象。
我們將甲醇在120 K 低溫下吸附於Pt/Al2O3/NiAl(100)表面上,在這之後
並加溫到各種不同的溫度。在加溫的過程中,我們發現甲醇的C1s 峰值隨
著加溫的溫度往高束縛能的方向偏移,這或許與產生的碳氫化合物吸附在
Pt 有關。我們也發現甲醇在300 K 的退火之後,產生了一個新峰值其值
與CO 吸附的峰值不同,我們認為是碳氫化合物的生成。
在研究金與白金的合金生成,由PES 所得到的結果是當合金生成時電子
會由白金傳遞到金上,並且在450 K 以上的退火溫度下白金的熱漂移與氧
化會造成合金的消失
當我們吸附甲醇在合金以及退火過的合金表面上時,由合金的增減情形
中得知當甲醇吸附在合金奈米團簇上時存在有特定的白金與金的比例。
摘要(英) We have studied the adsorption and decomposition of methanol on well-defined
supported Pt nanoclusters as a model catalyst and the alloying of Au-Pt nanoclusters
on thin film Al2O3/NiAl(100) by using synchrotron-based high-resolution
photoemission spectroscopy (PES).
Pt nanoclusters are deposited on well-ordered Al2O3 film grown on NiAl (100)
through vapor deposition in the ultrahigh vacuum conditions (<3 x 10-10 torr) at 300
K. By using PES we find that the electron structure of Pt doesn’t change with Pt
coverage. On annealing to 450 K the oxidized Pt form on the surface.
To study methanol decomposition, methanol was adsorbed on Pt/Al2O3/NiAl (100)
at 120 K and subsequent annealed to different temperatures. In our annealing
experiment, the C1s peak shifts towards higher binding energy with increasing
temperature, which is probably due to that the hydrocarbon-species (CHx) adsorb on
Pt nanoclusters, and the hydrocarbon-species (CHx) formed at the surface at 300 K.
According to the PES results, we observe evident shift for the Au-4f because of the
electron transfer from Pt to Au when Au-Pt alloy formed. During the annealing
procedure, the intensity of alloy decrease because of the Pt diffuse or oxidization.
There are change in intensity of Pt, pure Au, and alloy signals when adsorbing
methanol on (annealed) alloy cluster, which is probably due to a specific ratio of Pt to
Au in alloy cluster when adsorbed methanol.
關鍵字(中) ★ 甲醇
★ 合金
★ 光激發電子能譜儀
★ 白金
★ 金
關鍵字(英) ★ alloy
★ methanol
★ Pt
★ Au
★ XPS
論文目次 Chapter 1 Introduction………………………………………………………….1
Chapter 2 Literature Survey…………………………………………………...4
2.1 Al2O3/NiAl (100)…………………………………………………………………..4
2.1.1 The properties of NiAl (100)……………………………………………...4
2.1.2 θ-Al2O3 Grown on NiAl (100)……………………………………………5
2.1.3 Metal nanoclusters grown on oxide surface………………………………7
2.2 Application of Methanol…………………………………………………………..8
2.2.1 H2 Generation from Methanol…………………………………………….8
2.2.2 Literature Survey for Methanol Decomposition………………………….9
Chapter 3 Experimental Instruments………………………………………12
3.1 Ultrahigh Vacuum (UHV) System ………………………………………………12
3.2. XPS Analysis Chamber………………………………………………………….14
3.3 X-ray Photoemission Spectroscopy (XPS) ………………………………………15
3.4 Experimental Methods ……………………………………………………….…..19
3.4.1 Sample Cleaning ………………………………………………………….19
3.4.2 Oxygen Exposure on NiAl (100)………………………………………….20
3.4.3 metal Deposition on Al2O3/NiAl (100) …………………………………..21
3.4.4 Methanol Adsorption and Decomposition ……………………………….21
Chapter 4 Results and Discussions…………………………………………..23
4.1 Growth of Pt Nanoclusters on Al2O3/NiAl (100)………………………………23
4.2 Methanol Decomposition on Pt/Al2O3/NiAl (100)..……………………………27
4.2.1 Methanol Adsorption and Decomposition on Pt/Al2O3/NiAl(100)……….27
4.2.2 Methanol Adsorption and Decomposition on Pt Clusters with
different co verage………………………………………………………..33
4.3 Growth of Pt-Au Bimetal Nanoclusters on Al2O3/NiAl (100)……...……………36
4.3.1 Au-Pt nanoclusters/Al2O3/NiAl (100)…………………………………….36
4.3.2 Annealed Au-Pt nanoclusters/Al2O3/NiAl (100)………………………….47
4.3.3 The effect of exposing methanol to Au-Pt nanoclusters…………………..54
Chapter 5 Conclusions………………………………………………….………61
參考文獻 Chapter 1
[1] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl.
Catal. A 171, 123 (1998)
[2] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245
(1993)
[3] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[4] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J.
Catal. 194, 373 (2000)
[5] B. A. Sexton, Surf. Sci. 102, 271 (1981)
[6] K. Christmann, J. E. Demuth, J. Chem. Phys. 76, 6308 (1982)
[7] S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda,
Phys. Chem. Chem. Phys. 4, 3909 (2002)
[8] F. Boccuzzi, A. Chiorino, M. Manzoli, J. Power Source 118, 304 (2003)
[9] N. Toshima, Y. Wang, Chem. Lett. (1993) 1611.
[10] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 96
(1992) 9927.
[11] A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert,
G. Schmid, H. West, J. Phys. Chem. 99 (1995) 6096.
[12] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura,
J. Phys. Chem. 95 (1991) 7448.
[13] T. Yonezawa, N. Toshima, J. Mol. Catal. 83 (1993) 167.
[14] J. Turkevich, G. Kim, Science 169 (1970) 873
[15] N.T. Flynn, A.A. Gewirth, J. Raman Spectrosc. 33 (2002) 243.
[16] T. Takenaka, K. Eda, J. Colloid Interface Sci. 105 (1985) 342.
[17] H. Tada, F. Suzuki, S. Ito, T. Akita, K. Tanaka, T. Kawahara,
H. Kobayashi, J. Phys. Chem. B 106 (2002) 8714.
[18] C. Mihut, C. Descorme, D. Duprez, M.D. Amirdis, J. Catal. 212 (2002) 125.
[19] L.M. Liz-Marzan, A.P. Philipse, J. Phys. Chem. 99 (1995) 15,120.
[20] B. C. Bond, Surf. Sci. 156, 966 (1985)
[21] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998)
[22] V. P. Zhdanov, B. Kasemo, Surf. Sci. Rep. 39, 25 (2000)
[23] T. P. St. Clair, D. W. Goodman, Top. Catal. 13. 5 (2000)
[24] R. Franchy, Surf. Sci. Reports 38, 195 (2000)
[25] R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
chapter 2
[1] Ch. ToÈlkes, R. Struck, R. David, P. Zeppenfeld, G. Comsa, Phys. Rev. Lett. 80,
2877 (1998).
[2] N. Frèmy, V. Maurice, P. Marcus, J. Am. Ceram. Soc. 86, 669 (2003)
[3] M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang, M. F. Luo, Surf. Sci. 600, 1942
(2006)
[4] H. Kno¨zinger, J. Weitkamp, Handbook of Heterogeneous Catalysis, VCH,
Weinheim (1997).
[5] R. Franchy, J. Masuch, P. Gassmann, Appl. Surf. Sci. 93, 317 (1996)
[6] N. Frèmy, V. Maurice, P. Marcus, Surf. Interface Anal. 314, 519 (2002)
[7] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
[8] K.-H. Hellwege, Ed., Landolt-Börnstein, Bd.ш/7b , Springer, Heidelberg, 1975
[9] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396, 176 (1998)
[10] A. Biswas, O.C. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel,
Appl. Phys. Lett. 84 (2004) 2655.
[11] S. Nie, S.R. Emory, Science 275 (1997) 1102.
[12] T. Ioannides, X. Verykios, J. Catal. 140 (1993) 353.
[13] T. Ioannides, A.M. Efstahiou, Z.L. Zhang, X. Verykios, J. Catal. 156 (1995) 265.
[14] J. J. Spivey, Catalysis Volume 16, Royal Society of Chemistry (2002)
[15] Y. Usami, K. Kahawa, Y. Matsumura, H. Sakurai, M. Haruta, Appl.
Catal. A 171, 123 (1998)
[16] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A 93, 245(1993)
[17] M. L. Cubeiro, J. L. G. Fierro, Appl. Catal. A 168, 307 (1998)
[18] S. Velu, K. Suzuli, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J.
Catal. 194, 373 (2000)
[19] J. J. Chen, Z. C. Jiang, Y. Zhou, B. R. Charkraborty, N. Winograd, Surf.
Sci. 328, 248 (1995)
[20] M. Rebholz, N. Kruse, J. Chem. Phys. 95, 7745 (1991)
[21] S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, H.
J. Freund, Catal. Lett. 84, 209 (2002)
[22] N.Kizhakevariam and E.M. Stuve, Surface Science 286(1993) 246~260
[23] Brett A. Sexton, Surface Science 102 (1981) 271 – 281.
[24] Ann W. Grant, Jane H. Larsen, C. A. Perez, S. Lehto, Martin Schmal, and
Charles T. Campbell, J. Phys. Chem. B 2001, 105, 9273-9279.
chapter 3
[1].真空技術與應用,行政院國家科學委員會精密儀器發展中心出版
[2] J. C. Vickerman, Surface Analysis -The Principal Techniques, Jon Wiley & Sons,
1997.
[3] Y. W. Yang, L. J. Fan, Langmuir 18, 1157-1164 (2002)
[4] S. Hofmann, In Practical Surface Analysis, Auger and X-ray
Photoelectron Spectroscopy, D. Briggs, M. P. Seah, Eds., John Wiley & Sons,
1990
[5] H. Lüth, Surfaces and Interfaces of Solids, Springer-Verlag, 1993
[6] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319, 95 (1994)
chapter 4
[1] W. Song, M. Yoshitake, Appli. Surf. Sci. 241, 164 (2005)
[2]. P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, T.
Tabakova, J.
Mol. Catal. A 213, 235 (2004).
[3]. C. P. Vinod,*ab J. W. Niemantsverdrieta and B. E. Nieuwenhuys*, Phys . Chem.
Chem. Phys . , 2 0 0 5 , 7 , 1 8 2 4 – 1 8 2 9.
[4] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo. / Surface Science 600
(2006) 4978–4985
[5] M. Ba umer, H. ‥ -J. Freund, Prog. Surf. Sci. 61 (1999) 127.
[6] J. Libuda, M. Ba umer, H. ‥ -J. Freund, J. Vac. Sci. Technol. A 12
(1994) 2259.
[7] Th. Bertrams, F. Winkelmann, T. Uttich, H.-J. Freund, H. Neddermeyer,
Surf. Sci. 331–333 (1995) 1515.
[8] M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Ba umer, R. Schlo gl, ‥ ‥
H.-J. Freund, Surf. Sci. 391 (1997) 27.
[9] M. Klimenkov, H. Kuhlenbeck, S.A. Nepijko, Surf. Sci. 539 (2003)
31.
[10] T.J. Minvielle, R.L. White, M.L. Hildner, R.J. Wilson, Surf. Sci. 366
(1996) L755.
[11] E.I. Altman, R.J. Gorte, J. Phys. Chem. 93 (1989) 1993.
[12] N. Ernst, B. Duncombe, G. Bozdech, M. Naschitzki, H.-J. Freund,
Ultramicroscopy 79 (1999) 231.
[13] Y. Murata, M. Kundu, A. Ikeda, H. Fujimoto, M. Matsumoto, Surf.
Sci. 493 (2001) 114.
[14] S. Roberts, R.J. Gorte, J. Chem. Phys. 93 (1990) 5337.
[15] N. Toshima, Y. Wang, Chem. Lett. (1993) 1611.
[16] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 96
(1992) 9927.
[17] A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert,
G. Schmid, H. West, J. Phys. Chem. 99 (1995) 6096.
[18] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura,
J. Phys. Chem. 95 (1991) 7448.
[19] T. Yonezawa, N. Toshima, J. Mol. Catal. 83 (1993) 167.
[20] S. Devarajan et al. / Journal of Colloid and Interface Science 290 (2005) 117–129
[21] G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Ko hler, P. ‥
Varga, Science 308 (2005) 1440.
[22] M.S. Zei *, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surface Science 600
(2006) 1942–1951
[23] C.T. Campbell, Surf. Sci. Rep. 27 (1997) 1.
[24] C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.
[25] M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647.
[26] H.-J. Freund, Surf. Sci. 500 (2002) 271.
指導教授 羅夢凡(Meng-fan Luo) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明