博碩士論文 104626603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.119.110.76
姓名 王小玫(Vuong Thi Hong Nhi)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 以三維數值法研究潰壩波與柱列間之交互作用
(Three-Dimensional Numerical Study on the Interaction between Dam-Break Wave and Cylinder Array)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
海嘯湧潮之行為與潰壩湧潮非常相似,利用潰壩湧潮研究海嘯湧潮衝擊結構物之交互作用,為海嘯減災研究另闢蹊徑。充分了解潰壩湧潮與碎波傳遞之物理過程,對於減少海嘯破壞、制定有效之防災及減災措施至關重要。
  本文以數值方法研究潰壩湧潮通過近岸植生與結構物之能量消散,並將植生與結構物在數值模式中以方柱陣列表示。本研究採用Splash 3D模式進行數值計算,求解三維N-S方程式,其中大渦模擬(LES)作為紊流模式,並以流體體積法(VOF)追蹤複雜之自由液面。
  數值實驗中,研究潰壩波通過兩組不同高度之方柱陣列,分別為高度0.1m 及 0.2m,並分析上游至下游之流速與渦度場。研究結果表示,紊流導致次網格尺度之數值擴散為潰壩波能量下降之主因。湧潮向下游傳遞時,流速逐漸增大,而方柱高度會影響通過方柱陣列後之渦度場及流速表現。雖然通過較高之方柱會導致更慢之下游流速,但流速會持續較長時間才開始減速。此外,也會在底床產生較大之流場及渦度。
摘要(英) Abstract
The behavior of dam-break bore is very similar to the tsunami bore. Using dam-break wave as a tsunami bore to study its interaction with rigid structures opens a new approach for study tsunami. Fully understanding the physical process of dam-break is crucial for reducing damage and formulating effective disaster prevention and mitigation measures. In this thesis, we study how the energy of a dam-break bore is dissipated by the square cylinders numerically, which present for the coastal vegetation and coastal structures. The computational model, Splash3D, is adopted in this study. Splash3D solves the three-dimensional Navier-Stokes equations directly with Large-Eddy Simulation (LES) as a turbulent closure model. The Volume-of-fluid (VOF) method is used to track the complex free surface. The dam-break flows with two different cylinder array: 0.1 m and 0.2 m in height are numerically investigated. Both velocity magnitude and vorticity are analyzed in upstream as well as downstream region. The results show that the sub-grid scale diffusion is the main reason for energy decline in the dam-break cases due to the domination of turbulent flow. The velocity of the dam-break flows becomes higher when the waves travel downstream. The cylinders’ height affects the wave-breaking and the velocity magnitude as well as vorticity field after the cylinder arrays. The cylinders are taller which causes velocity magnitude downstream smaller. However, the resident time of a high velocity is longer. In addition, the tall-cylinder case has a larger value of velocity magnitude and vorticity near the bottom.
Key words: Tsunami, Dam-break wave, Navier-stokes equations, cylinder array.
關鍵字(中) ★ 海嘯
★ 潰壩湧潮
★ 三維NS數值模擬
★ 方柱陣列
★ 碎波
★ 植生消能
關鍵字(英) ★ Tsunami
★ Dam-break bore
★ Navier-stokes equations
★ Cylinder array
★ Breaking waves
★ Energy dissipation by coastal vegetation
論文目次 Abstract i
摘要 ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables xv
1. Introduction 1
1.1. Motivation 1
1.2. Literature review 3
1.2.1. Experimental and numerical studies of dam-break flow 3
1.2.2. Analytical study of dam-break flow 4
1.2.3. Dam-break flow with Navier-Stokes equations 5
1.2.4. Dam-break wave flowing through porous media 6
1.3. Scope of Present Study 7
2. Computational model 9
2.1. Navier-Stokes Equations 9
2.2. Turbulence modeling 10
2.3. Volume of Fluid Method and Volume Tracking Algorithm 14
2.4. Partial-Cell Treatment 17
2.5. Numerical stability criterion 17
2.6. Boundary conditions (BC) 18
3. Model validation 20
3.1. Experimental setup 20
3.2. Numerical setup 20
3.3. Gauge data validation 21
4. Results and Discussion 29
4.1. Flow description 30
4.2. Wave breaking and wave reflection 31
4.3. Effect of cylinder height 34
4.4. The symmetry of the flow field 36
4.5. Velocity vector profile 38
4.6. The energy diffusion 39
4.7. The effect of Near-Wall Treatment 41
4.8. The study on the initial stage of the dam-break flow 42
5. Conclusions 79
6. Future work 80
Bibliographies 81
Appendix A 86
Appendix B 121
Appendix C 121
參考文獻 1 Baggett, J.S., Jimenez, J., & Kravchenko, A.G. Resolution requirements in large-eddy simulations of shear flows. Annual research briefs, 51-66, 1997.
2 Barth, T.J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. J. In AGARD, Special Course on Unstructured Grid Methods for Advection Dominated Flows 61 p (SEE N92-27671 18-34), 1992.
3 Biscarini, C., Di Francesco, S., Manciola, P., CFD modelling approach for dam break flow studies. J. Hydrology and Earth System Sciences, 14.4: 705, 2010.
4 Cabot, W., & Moin, P. Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63(1), 269-291. 2000.
5 Carman, P. C. Fluid flow through granular beds. J. Chemical Engineering Research and Design, 75, S32-S48, 1997.
6 Chanson, H. Application of the method of characteristics to the dam break wave problem. Journal of Hydraulic Research, 47(1), 41-49. 2009.
7 Chanson, H. Applications of the Saint-Venant equations and method of characteristics to the dam break wave problem. 2005.
8 Cheng, D., Zhao, X. Z., Zhang, D. K., & Chen, Y. Numerical study of dam-break induced tsunami-like bore with a hump of different slopes. China Ocean Engineering, 31(6), 683-692. 2017.
9 Daru. N.P., Large eddy simulation of dam-break flows through porous obstacles. 2017.
10 Dean, R.G., & Dalrymple, R.A. Water wave mechanics for engineers and scientists (Vol. 2). World scientific publishing Co Inc. 1991.
11 Dewals, B., Bruwier, M., Erpicum, S., Pirotton, M., & Archambeau, P. Energy conservation properties of Ritter solution for idealized dam break flow. Journal of Hydraulic Research, 54(5), 581-585. 2016.
12 Fraccarollo, L., & Capart, H. Riemann wave description of erosional dam-break flows. Journal of Fluid Mechanics, 461, 183-228. 2002.
13 Ganesan, T., & Awang, M. Large Eddy Simulation (LES) for Steady-State Turbulent Flow Prediction. In Engineering Applications of Computational Fluid Dynamics, pp. 17-32. Springer International Publishing, 2015.
14 Gullbrand, J., & Chow, F. K. The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mechanics, 495, 323-341. 2003.
15 Hu, K.C., Hsiao, S.C., Hwung, H.H., & Wu, T.R. Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. J. Advances in Water Resources, 47, 14-30, 2012.
16 Jensen, B., Jacobsen, N. G., & Christensen, E. D. Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. 2014.
17 Korobkin, A., & Yilmaz, O. The initial stage of dam-break flow. Journal of Engineering Mathematics, 63(2-4), 293-308. 2009.
18 LaRocque, L.A., Imran, J., & Chaudhry, M.H. Experimental and numerical investigations of two-dimensional dam-break flows. J. Hydraulic Engineering, 139(6), 569-579, 2012.
19 Leonard, A. Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18: 237-248, 1975.
20 Lin, C. Three-dimensional numerical simulation of nonlinear sloshing. 2017.
21 Lin, C., Yeh, P. H., Kao, M. J., Yu, M. H., Hsieh, S. C., Chang, S. C., ... & Tsai, C. P. (2014). Velocity Fields in Near-Bottom and Boundary Layer Flows in Prebreaking Zone of a Solitary Wave Propagating over a 1: 10 Slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 141(3), 04014038.
22 Lin, P., & Li, C.W. Wave–current interaction with a vertical square cylinder. Ocean Engineering, 30(7), 855-876, 2003.
23 Linton, D., Gupta, R., Cox, D., van de Lindt, J., Oshnack, M. E., & Clauson, M. Evaluation of tsunami loads on wood-frame walls at full scale. Journal of Structural Engineering, 139(8), 1318-1325. 2012.
24 Liu, P.F., Wu, T.R., Raichlen, F., Synolakis, C.E., & Borrero, J.C. Runup and rundown generated by three-dimensional sliding masses. J. fluid Mechanics, 536, 107-144, 2005.
25 Liu, D., & Lin, P. A numerical study of three-dimensional liquid sloshing in tanks. J. Computational physics, 227(8), 3921-3939, 2008.
26 Rider, W.J., & Kothe, D.B. Reconstructing volume tracking. J. Computational physics, 141(2), 112-152. 1998.
27 Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164, 1963.
28 Soares, F.S., ZECH, Y., Experimental study of dam-break flow against an isolated obstacle. J. Hydraulic Research, 45.sup1: 27-36, 2007.
29 Soares, F.S., ZECH, Y., Dam-break flow through an idealized city. J. Hydraulic Research, 46.5: 648-658, 2008.
30 Stansby, P.K., Chegini, A., Barnes, T.C.D., The initial stages of dam-break flow. J. Fluid Mechanics, 370: 203-220, 1998.
31 Tanaka, N. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landscape and Ecological Engineering, 5(1), 71-79. 2009.
32 Wang, Y., Liang, Q., Kesserwani, G., & Hall, J. W. (2011). A 2D shallow flow model for practical dam-break simulations. Journal of Hydraulic Research, 49(3), 307-316.
33 Wu, T.R. A numerical study of three-dimensional breaking waves and turbulence effects. 2004.
34 Wu, T.R., Liu, P., Numerical study on the three-dimensional dam-break bore interacting with a square cylinder. J. Nonlinear Wave Dynamics. p. 281-303, 2009.
35 Wu, W., & Wang, S. S. One-dimensional modeling of dam-break flow over movable beds. Journal of hydraulic engineering, 133(1), 48-58. 2007.
36 Xu, F.G., Yang, X.G., Zhou, J.W., & Hao, M.H. Experimental research on the dam-break mechanisms of the Jiadanwan landslide dam triggered by the Wenchuan earthquake in China. The Scientific World Journal, 2013.
37 http://www.history.com/this-day-in-history/tsunami-devastates-indian-ocean-coast
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明