博碩士論文 104821012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.119.159.150
姓名 鍾佳芳(CHUNG,JIA-FANG)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病
(Green Tea Epicatechin Improved Transverse Aortic Banding-Induced Heart Disease in Mice via the MicroRNA-494 Pathway)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 心血管疾病 (Cardiovascular diseases, CVDs) 是全球第一死因。根據世界衛生組織統計,西元2016年總共有1770萬人死於CVDs。這反映了除人體健康之外,CVDs對全球死亡率的重大影響。雖然CVDs的病程發展分別被microRNA-494 (miR-494) 與表兒茶素 (Epicatechin, EC) 調控,但EC是否在心血管疾病中調控miR-494的機制還不是很清楚。本論文使用橫向主動脈繃紮術 (Transverse aortic banding, TAB) 以及H9c2大鼠心肌細胞探討EC是否透過miR-494的路徑來改善心肌肥大以及纖維化的現象。我們確認小鼠在TAB後2周和12周造成心臟功能異常,包括增加血流速、血壓、收縮與舒張時的心室中隔厚度和收縮與舒張時的左心室後壁厚度,而在12周時心臟左心室短縮分率 (Left ventricular fractional shortening, LVFS) 以及左心室射出率 (Left ventricular ejection fraction, LVEF) 顯著下降。在TAB後12周的數據中觀察到會增加心臟重量、纖維化現象,而在TAB後2周和12周時,數據指出會增加心肌肥大的生物標誌因子,如β-MHC、ANP與BNP並下降α-MHC,另外纖維化的生物標誌因子,如Col1α2和Col3α1也在TAB後2周及12周上升。此外,TAB後3、7、14和21天會增加小鼠心臟miR-494的RNA表現量,但在1天時並不會被影響,而miR-494抑制基因ATF3會在1天顯著上升,而後3~21天掉回基準點。處理0.25毫克/公斤/天的EC可以回復TAB後12周所下降的LVFS以及LVEF。另外,EC會抑制心臟中β-MHC、ANP和miR-494的RNA表現量,而且也改善TAB所導致的心臟纖維化,可能是透過抑制2周心臟中Col1α2和Col3α1表現量,而Col3α1到12周仍持續抑制,但心臟重量沒顯著差異。同時,在TAB 12周後的miR-494基因轉殖鼠,其心臟纖維化現象略高而LVFS與LVEF顯著差於野生小鼠,但心臟重量並無差異。此外,TAB 12周後的miR-494基因轉殖鼠處理EC 1毫克/隻/兩天,可以提高LVFS以及LVEF的百分比。在H9c2心肌細胞中我們預處理5 μM的EC會抑制Angiotensin-II所誘導增加的miR-494 RNA表現量。根據體內以及體外實驗數據,我們得知EC會透過抑制miR-494表現量來改善TAB誘導的心臟病,而這個論點也讓我們瞭解食用含有EC的綠茶如何保護人類避免心血管疾病的風險。
摘要(英) Cardiovascular diseases (CVDs) are the first leading cause of death globally. According to the statistics by the World Health Organization, an estimated 17.7 million people died from CVDs in 2016. This reflects the big impacts of CVDs on global mortality rate besides human health. Although development of CVDs can be respectively regulated by microRNA-494 (miR-494) and green tea (-)-epicatechin (EC), it is still unknown whether EC interacts with miR-494 on CVDs. The present thesis was designed to use transverse aortic banding (TAB)-induced mice and H9c2 rat cardiocytes and investigate whether EC improved cardiac hypertrophy and fibrosis through the miR-494 pathway. We confirmed that mice with TAB for 2 and 12 weeks caused cardiac dysfunctions, including increased blood flow velocity, blood pressure, IVSd, IVSs, LVPWd, and LVPWs, while cardiac LVFS and LVEF were decreased at 12 weeks. At 12 weeks, TAB also induced increases in heart weight, fibrosis. At 2 and 12 weeks, TAB induced increases cardiac hypertrophic marker genes, such as β-MHC, ANP, and BNP, but decrease α-MHC. Besides, fibrosis marker genes, such as Col1α2 and Col3α1, induced at 2 and 12 weeks. In addition, TAB induced an increase of miR-494 RNA expression in mice heart after 3, 7, 14, and 21 days but not 1 day of treatment, while the miR-494-downregulated gene ATF3 was increased with mRNA levels at day 1 and then significantly declined to the basal levels at day 3 until day 21. Treatment with EC (0.25 mg/kg/d) antagonized 12-week-TAB-induced decreases in cardiac LVFS and LVEF. Also, EC suppressed TAB-induced increases in levels of β-MHC, ANP and miR-494 RNA levels in the heart. Moreover, EC improved TAB-induced cardiac fibrosis, maybe via inhibited Col1α2 and Col3α1 at 2 weeks; in addition, Col3α1 held down at 12 weeks. Interestingly, EC had no effect on heart weight in TAB-treated mice. In parallel, miR-494-transgenic mice with TAB for 12 weeks exhibited slightly greater level of cardiac fibrosis and significantly less percentages of LVFS and LVEF compared with non-transgenic mice with TAB. But, no significant changes were observed in the heart weight. Moreover, treatment with 1 mg EC/mice/2d improved the percentages of LVFS and LVEF in miR-494-transgenic mice with 12-week TAB. Using H9c2 cardiocytes, we found that pretreatment with 5 μM of EC blocked angiotensin-II-induced increases of miR-494 RNA levels. According to these in vivo and in vitro findings, we conclude that EC improves TAB-induced heart disease through inhibition of miR-494 expression. Results of this thesis also led us to understand how consumption of EC-containing green tea protects humans against the risk of CVDs.
關鍵字(中) ★ 綠茶表兒茶素
★ 微小核醣核酸-494
★ 橫向主動脈繃紮術
★ 心臟疾病
關鍵字(英) ★ Green Tea Epicatechin
★ microRNA-494
★ Transverse Aortic Banding
★ Heart Disease
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
縮寫對照表 viii
壹、 前言 1
1-1心肌肥大 1
1-1-1心肌肥大的風險因子 1
1-1-2心肌肥大的症狀與影響 1
1-1-3心肌肥大的診斷治療 2
1-1-4心肌肥大的細胞傳訊路徑 2
1-1-5心肌肥大的生物標誌 3
1-2心肌肥大與微小核醣核酸 3
1-2-1微小核醣核酸 4
1-2-2微小核醣核酸與心肌肥大 4
1-3茶與心血管疾病 5
1-3-1茶葉成分與表兒茶素的重要性 5
1-3-2表兒茶素的穩定性 6
1-3-3表兒茶素吸收與代謝 6
1-3-4表兒茶素與心肌肥大的訊息傳遞路徑 6
1-4研究目的與動機 7
貳、 材料方法 8
2-1實驗動物 8
2-2細胞培養 8
2-3心肌肥大的模式 9
2-3-1體內模式 (In vivo model) 9
2-3-2體外模式 (In vitro model) 9
2-4 EC給予之體內體外方式 9
2-4-1體內模式 (In vivo model) 10
2-4-2體外模式 (In vitro model) 10
2-5 miR-494基因轉殖鼠 (miR-494 transgenic mice) 10
2-6即時聚合酶鏈鎖反應 (Real-time polymerase chain reaction) 11
2-7心臟超音波分析 (Echocardiography) 11
2-8動物犧牲 (Sarcrifice) 12
2-9次世代定序 (Next Generation Sequencing) 12
2-10組織病理切片及染色 (Histology) 12
2-11 miR-494基因剔除鼠 (miR-494 knockout mice) 14
2-12統計方式 14
參、 實驗結果 15
3-1橫向主動脈繃紮術所引起的心肌肥大降低小鼠心臟功能 15
3-2橫向主動脈繃紮術所引起的心肌肥大造成小鼠心臟纖維化 16
3-3橫向主動脈繃紮術所引起的心肌肥大增加miR-494基因表現量 17
3-4 Epichatechin改善橫向主動脈繃紮術所引起的心肌肥大小鼠心臟功能 17
3-5 Epichatechin改善橫向主動脈繃紮術所引起的心肌肥大小鼠病理現象 18
3-6 Epichatechin在心肌肥大小鼠中抑制miR-494基因表現量 19
3-7用NGS分析Epichatechin在心肌肥大小鼠中可能影響的傳訊路徑 19
3-8 Epichatechin在Angiotensin II誘導心肌細胞肥大中抑制miR-494表現量 21
3-9建立miR-494基因轉殖鼠 21
3-10在橫向主動脈繃紮術後miR-494基因轉殖鼠心臟功能低於正常小鼠 22
3-11在橫向主動脈繃紮術後miR-494基因轉殖鼠病理現象 23
3-12建立miR-494基因剔除鼠 23
肆、 討論 24
伍、 結論 28
陸、 參考文獻 29
柒、 表目錄 37
捌、 圖目錄 44
附錄一 83
附錄二 84
附錄三 86
附錄四 88
附錄五 90
附錄六 92

參考文獻 1. 陳業鵬 et al. 心電圖與心臟超音波診斷左心室肥厚的相關性. 內科學誌 20, 99-105 (2009).
2. Burke, M.A. et al. Clinical and Mechanistic Insights Into the Genetics of Cardiomyopathy. J Am Coll Cardiol 68, 2871-2886 (2016).
3. 郝立智 et al. 2005年美國糖尿病學會針對糖尿病合併高血壓之標準治療建議. 內科學誌 16, 107-112 (2005).
4. Stamler, J. et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16, 434-444 (1993).
5. Turner, R.C. et al. Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens 11, 309-317 (1993).
6. Chobanian, A.V. et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 2560-2572 (2003).
7. Liu, J. et al. Acute restraint stress provokes sudden cardiac death in normotensive rats and enhances susceptibility to arrhythmogenic effects of adrenaline in spontaneously hypertensive rats. Legal Medicine 21, 19-28 (2016).
8. Schreier, B. et al. Deletion of the EGF-receptor in vascular smooth muscle cells prevents chronic angiotensin II-induced arterial wall stiffening and media thickening. Acta Physiol (Oxf) (2017).
9. Sun, G. et al. Effect of High Thoracic Sympathetic Nerve Block on Serum Collagen Biomarkers in Patients with Chronic Heart Failure. Cardiology 136, 102-107 (2017).
10. Han, L. et al. Left Ventricular Noncompaction Combined With Epinephrine-Secreted Pheochromocytoma Inducing Heart Failure. Int Heart J 57, 254-257 (2016).
11. Guzzo-Merello, G. et al. Natural History and Prognostic Factors in Alcoholic Cardiomyopathy. JACC: Heart Failure 3, 78-86 (2015).
12. Fernandez-Sola, J. et al. New Treatment Strategies for Alcohol-Induced Heart Damage. Int J Mol Med Sci 17 (2016).
13. Petrov, G. et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122, S23-28 (2010).
14. Chandrasekhar, J. et al. Valvular Heart Disease in Women, Differential Remodeling, and Response to New Therapies. Curr Treat Options Cardiovasc Med 19, 74 (2017).
15. Wu, T.-Y. et al. The Effects of Simple Eight-week Regular Exercise on Cardiovascular Disease Risk Factors in Middle-aged Women at Risk in Taiwan. Acta Cardiol Sin 23, 169-176 (2007).
16. Sabater-Molina, M. et al. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin Genet (2017).
17. Bell, D. et al. Adrenomedullin gene delivery is cardio-protective in a model of chronic nitric oxide deficiency combining pressure overload, oxidative stress and cardiomyocyte hypertrophy. Cell Physiol Biochem 26, 383-394 (2010).
18. Li, X. et al. Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway. Mol Med Rep 15, 2574-2582 (2017).
19. Jacobson, S.L. et al. Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol 18, 661-678 (1986).
20. Dubus, I. et al. Contractile protein gene expression in serum-free cultured adult rat cardiac myocytes. Pflugers Archiv 423, 455-461 (1993).
21. McDonough, P.M. et al. Phenylephrine and endothelin differentially stimulate cardiac PI hydrolysis and ANF expression. Am J Physiol 264, H625-630 (1993).
22. Schluter, K.D. et al. Regulation of protein synthesis and degradation in adult ventricular cardiomyocytes. Am J Physiol 269, C1347-1355 (1995).
23. Ho, C.Y. Hypertrophic cardiomyopathy: preclinical and early phenotype. J Cardiovasc Transl Res 2, 462-470 (2009).
24. Ho, J.E. et al. Biomarkers of cardiovascular stress and fibrosis in preclinical hypertrophic cardiomyopathy. Open Heart 4 (2017).
25. Berk, B.C. et al. ECM remodeling in hypertensive heart disease. J Clin Invest 117, 568-575 (2007).
26. Toischer, K. et al. Differential cardiac remodeling in preload versus afterload. Circulation 122, 993-1003 (2010).
27. Albano, B.B. et al. Treating a Structural Heart Disease Using a Non-structural Approach: Role of Cardiac Pacing in Hypertrophic Cardiomyopathy. Cardiol Res 8, 20-25 (2017).
28. Maron, B.J. et al. Hypertrophic cardiomyopathy. Lancet 381, 242-255 (2013).
29. Bisping, E. et al. Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64, 293-305 (2014).
30. Spinale, F.G. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87, 1285-1342 (2007).
31. Kehat, I. et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108, 176-183 (2011).
32. Du, M. et al. Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy. J Huazhong Univ Sci Technolog Med Sci 33, 822-826 (2013).
33. Wu, Q.Q. et al. Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. HERZ 39, 390-396 (2014).
34. Dong, Z.X. et al. (-)-Epicatechin Suppresses Angiotensin II-induced Cardiac Hypertrophy via the Activation of the SP1/SIRT1 Signaling Pathway. Cell Physiol Biochem 41, 2004-2015 (2017).
35. Satoh, M. et al. M. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail 16, 404-410 (2010).
36. Rotini, A. et al. Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacol Res 127, 58-66 (2018).
37. Orenes-Pinero, E. et al. Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 167, 1651-1659 (2013).
38. Kloosterman, W.P. et al. The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441-450 (2006).
39. Jovanovic, M. et al. miRNAs and apoptosis: RNAs to die for. Oncogene 25, 6176-6187 (2006).
40. Wang, Z. MicroRNA: A matter of life or death. World J Biol Chem 1, 41-54 (2010).
41. Su, Z. et al. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6, 8474-8490 (2015).
42. Han, M. et al. MicroRNAs in the cardiovascular system. Current Opin Cardiol 26, 181-189 (2011).
43. Lan, Y.F. et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 23, 2012-2023 (2012).
44. Wang, X. et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 122, 1308-1318 (2010).
45. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
46. Lewis, B.P. et al. Prediction of mammalian microRNA targets. Cell 115, 787-798 (2003).
47. Fang, Z. et al. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLOS ONE 6, e18067 (2011).
48. Thum, T. et al. MicroRNAs in cardiac hypertrophy and failure. Drug Discov Today Dis Mech 5, e279-e283 (2008).
49. Han, M. et al. MicroRNAs in the cardiovascular system. Curr Opin Cardiol 26, 181-189 (2011).
50. Noad, R.L. et al. Beneficial effect of a polyphenol-rich diet on cardiovascular risk: a randomised control trial. Heart 102, 1371-1379 (2016).
51. Mak, J.C. Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol 39, 265-273 (2012).
52. Shukla, Y. Tea and cancer chemoprevention: a comprehensive review. Asian Pac J Cancer Prev 8, 155-166 (2007).
53. Balentine, D.A. et al. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37, 693-704 (1997).
54. Chen, Y.A. et al. Pharmacokinetics of (-)-epicatechin in rabbits. Arch Pharm Res 32, 149-154 (2009).
55. Flammer, A.J. et al. Dark chocolate improves coronary vasomotion and reduces platelet reactivity. Circulation 116, 2376-2382 (2007).
56. Yanagi, S. et al. Oral pretreatment with a green tea polyphenol for cardioprotection against ischemia-reperfusion injury in an isolated rat heart model. J Thorac Cardiovasc Surg 141, 511-517 (2011).
57. Zeng, X. et al. Green tea may be benefit to the therapy of atrial fibrillation. J Cell Biochem 112, 1709-1712 (2011).
58. Nogueira, L. et al. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J Physiol 589, 4615-4631 (2011).
59. Gomez-Guzman, M. et al. Chronic (-)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. Br J Nutr 106, 1337-1348 (2011).
60. Yamazaki, K.G. et al. Effects of (-)-epicatechin on myocardial infarct size and left ventricular remodeling after permanent coronary occlusion. J Am Coll Cardiol 55, 2869-2876 (2010).
61. Yamazaki, K.G. et al. Short- and long-term effects of (-)-epicatechin on myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 295, H761-767 (2008).
62. Yang, C.S. et al. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7, 351-354 (1998).
63. Zhu, M. et al. Oral absorption and bioavailability of tea catechins. Planta Medica 66, 444-447 (2000).
64. Cai, Y. et al. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab Dispos 30, 1246-1249 (2002).
65. Chen, L. et al. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25, 1045-1050 (1997).
66. Yang, C.S. et al. Human salivary tea catechin levels and catechin esterase activities: implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev 8, 83-89 (1999).
67. Li, C. et al. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem Res Toxicol 13, 177-184 (2000).
68. Lambert, J.D. et al. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutat Res 523-524, 201-208 (2003).
69. Calabro, V. et al. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin. Food Funct 7, 1876-1883 (2016).
70. Taub, P.R. et al. Alterations in skeletal muscle indicators of mitochondrial structure and biogenesis in patients with type 2 diabetes and heart failure: effects of epicatechin rich cocoa. Clin Transl Sci 5, 43-47 (2012).
71. Ramirez-Sanchez, I. et al. (-)-Epicatechin improves mitochondrial related protein levels and ameliorates oxidative stress in dystrophic deltea sarcoglycan null mouse striated muscle. PLOS ONE 281, 5567-5580 (2014).
72. Hartley, C.J. et al. Conference Proceedings of the 23rd Annual International EMBC, Vol. 1, 184-187 (2001).
73. Kluknavsky, M. et al. (-)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats. Oxid Med Cellular Longev 2016, 6949020 (2016).
74. Hsiao, Y.C. et al. Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter. Genesis 39, 122-129 (2004).
75. Gao, S. et al. Echocardiography in Mice. Curr Protoc Mouse Biol 1, 71-83 (2011).
76. Lemieux, H. et al. Mitochondria in the human heart. J Bioenerg Biomembr 41, 99-106 (2009).
77. Kaufman, B.D. et al. Procollagen type III amino-terminal propeptide: a serum biomarker of left ventricular remodelling in paediatric dilated cardiomyopathy. Cardiol Young 25, 228-236 (2015).
78. Krenz, M. et al. Impact of beta-myosin heavy chain expression on cardiac function during stress. JACC Basic Transl Sci 44, 2390-2397 (2004).
79. Nishikimi, T. et al. The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69, 318-328 (2006).
80. Potter, L.R. et al. Natriuretic Peptides: Their Structures, Receptors, Physiologic Functions and Therapeutic Applications. Handb Exp Pharmacol, 341-366 (2009).
81. Kao, Y.H. et al. Modulation of obesity by a green tea catechin. Am J Clin Nutr 72, 1232-1234 (2000).

指導教授 高永旭 林恆(Yung-Hsi Kao Heng Lin) 審核日期 2018-3-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明